Islam Jahirul, Frentiu Francesca D, Devine Gregor J, Bambrick Hilary, Hu Wenbiao
Ecosystem Change and Population Health Research Group, School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia.
Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
Environ Health Perspect. 2025 May;133(5):56002. doi: 10.1289/EHP14463. Epub 2025 May 16.
Climate change is predicted to profoundly impact dengue transmission risk, yet a thorough review of evidence is necessary to refine understanding of climate scenarios, projection periods, spatial resolutions, and modeling approaches.
We conducted a state-of-the-science review to comprehensively understand long-term dengue risk predictions under climate change, identify research gaps, and provide evidence-based guidelines for future studies.
We searched three medical databases (PubMed, Embase, and Web of Science) up to 5 December 2024 to extract relevant modeling studies. An a search strategy, predefined eligibility criteria, and systematic data extraction procedures were implemented to identify and evaluate studies.
Of 5,035 studies retrieved, 57 met inclusion criteria. Prediction for dengue risk ranged from 1950 to 2115, and 52.63% () of all studies used Representative Concentration Pathways (RCPs). Specifically, RCP 8.5 (34.94%; ), Shared Socioeconomic Pathways (SSPs) 2 (32.35%; ), and the Special Report on Emissions Scenarios (SRES) A1 (58.33%; ) were utilized the most among all the RCPs, SSPs, and SRES climate change scenarios. Most studies (57.89%; ) used only climatic variables for the prediction, and 21.05% () of studies employed fine spatial resolution () for the climate data. We identified that correlative approach was used mostly across the studies for modeling the future risk (61.40%; ). Among mechanistic models, 35% () lacked outcome validation, and 75% () did not report model evaluation metrics.
We identified the urgent need to strengthen dengue databases, use finer spatial resolutions to integrate big data, and incorporate potential socioenvironmental factors such as human movement, vegetation, microclimate, and vector control efficacy in modeling. Utilizing appropriate spatiotemporal models and validation techniques will be crucial for developing functional climate-driven early warning systems for dengue fever. https://doi.org/10.1289/EHP14463.
预计气候变化将对登革热传播风险产生深远影响,但有必要对证据进行全面审查,以深化对气候情景、预测期、空间分辨率和建模方法的理解。
我们进行了一项科学现状综述,以全面了解气候变化下的长期登革热风险预测,确定研究差距,并为未来研究提供循证指南。
截至2024年12月5日,我们检索了三个医学数据库(PubMed、Embase和Web of Science),以提取相关建模研究。采用预先制定的检索策略、纳入标准和系统的数据提取程序来识别和评估研究。
在检索到的5035项研究中,57项符合纳入标准。登革热风险预测时间跨度为1950年至2115年,所有研究中有52.63%()使用了代表性浓度路径(RCPs)。具体而言,在所有RCPs、共享社会经济路径(SSPs)和排放情景特别报告(SRES)气候变化情景中,RCP 8.5(34.94%;)、SSP 2(32.35%;)和SRES A1(58.33%;)的使用最为频繁。大多数研究(57.89%;)仅使用气候变量进行预测,21.05%()的研究采用精细空间分辨率()的气候数据。我们发现,在建模未来风险的研究中,相关方法的使用最为普遍(61.40%;)。在机理模型中,35%()缺乏结果验证,75%()未报告模型评估指标。
我们确定迫切需要加强登革热数据库,使用更精细的空间分辨率来整合大数据,并在建模中纳入潜在的社会环境因素,如人类流动、植被、小气候和病媒控制效果。利用适当的时空模型和验证技术对于开发实用的气候驱动型登革热预警系统至关重要。https://doi.org/10.1289/EHP14463 。