Suppr超能文献

使用基于补丁的全卷积编码器-解码器网络从胸部X光片中检测和分割气胸。

Pneumothorax detection and segmentation from chest X-ray radiographs using a patch-based fully convolutional encoder-decoder network.

作者信息

Dumbrique Jakov Ivan S, Hernandez Reynan B, Cruz Juan Miguel L, Pagdanganan Ryan M, Naval Prospero C

机构信息

Computer Vision and Machine Intelligence Group, Department of Computer Science, University of the Philippines-Diliman, Quezon City, Philippines.

Department of Mathematics, Ateneo de Manila University, Quezon City, Philippines.

出版信息

Front Radiol. 2024 Dec 11;4:1424065. doi: 10.3389/fradi.2024.1424065. eCollection 2024.

Abstract

Pneumothorax, a life-threatening condition characterized by air accumulation in the pleural cavity, requires early and accurate detection for optimal patient outcomes. Chest X-ray radiographs are a common diagnostic tool due to their speed and affordability. However, detecting pneumothorax can be challenging for radiologists because the sole visual indicator is often a thin displaced pleural line. This research explores deep learning techniques to automate and improve the detection and segmentation of pneumothorax from chest X-ray radiographs. We propose a novel architecture that combines the advantages of fully convolutional neural networks (FCNNs) and Vision Transformers (ViTs) while using only convolutional modules to avoid the quadratic complexity of ViT's self-attention mechanism. This architecture utilizes a patch-based encoder-decoder structure with skip connections to effectively combine high-level and low-level features. Compared to prior research and baseline FCNNs, our model demonstrates significantly higher accuracy in detection and segmentation while maintaining computational efficiency. This is evident on two datasets: (1) the SIIM-ACR Pneumothorax Segmentation dataset and (2) a novel dataset we curated from The Medical City, a private hospital in the Philippines. Ablation studies further reveal that using a mixed Tversky and Focal loss function significantly improves performance compared to using solely the Tversky loss. Our findings suggest our model has the potential to improve diagnostic accuracy and efficiency in pneumothorax detection, potentially aiding radiologists in clinical settings.

摘要

气胸是一种危及生命的疾病,其特征是胸腔内积聚空气,需要早期准确检测以实现最佳的患者治疗效果。胸部X光片因其速度快且价格低廉,是一种常用的诊断工具。然而,对于放射科医生来说,检测气胸可能具有挑战性,因为唯一的视觉指标通常是一条移位的细胸膜线。本研究探索深度学习技术,以实现从胸部X光片中自动检测和分割气胸,并提高检测和分割的准确性。我们提出了一种新颖的架构,该架构结合了全卷积神经网络(FCNN)和视觉Transformer(ViT)的优点,同时仅使用卷积模块以避免ViT自注意力机制的二次复杂性。该架构采用基于补丁的编码器-解码器结构,并带有跳跃连接,以有效结合高级和低级特征。与先前的研究和基线FCNN相比,我们的模型在检测和分割方面表现出显著更高的准确性,同时保持了计算效率。这在两个数据集上得到了证明:(1)SIIM-ACR气胸分割数据集和(2)我们从菲律宾一家私立医院——医城医院整理的一个新数据集。消融研究进一步表明,与仅使用Tversky损失相比,使用混合的Tversky和焦点损失函数可显著提高性能。我们的研究结果表明,我们的模型有潜力提高气胸检测的诊断准确性和效率,可能有助于临床环境中的放射科医生。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45fc/11668597/d45847c30cb4/fradi-04-1424065-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验