Li Danhe, Lu Guangxiang, Cheng Zien, Avdeev Maxim, Xu Jungu, Zhou Zhengyang, Cong Rihong, Yang Tao, Jiang Pengfei
College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
Australian Nuclear Science and Technology Organisation Lucas Height NSW 2234 Australia
Chem Sci. 2024 Dec 18;16(4):1932-1947. doi: 10.1039/d4sc05323k. eCollection 2025 Jan 22.
Oxygen vacancies in Ruddlesden-Popper (RP) perovskites (PV) [AO][ABO] play a pivotal role in engineering functional properties and thus understanding the relationship between oxygen-vacancy distribution and physical properties can open up new strategies for fine manipulation of structure-driven functionalities. However, the structural origin of preferential distribution for oxygen vacancies in RP structures is not well understood, notably in the single-layer ( = 1) RP-structure. Herein, the = 1 RP phase SrNdZnO was rationally designed and structurally characterized by combining three-dimensional (3D) electron diffraction and neutron powder diffraction. SrNdZnO adopts a novel 2-fold = 1 RP-type -superstructure due to the concurrence of A-site column ordering and oxygen-vacancy array ordering. These two ordering models are inextricably linked, and disrupting one would thus destroy the other. Oxygen vacancies are structurally confined to occupy the equatorial sites of "BO"-octahedra, in stark contrast to the preferential occupation of the inner apical sites in ≥ 2 structures. Such a layer-dependent oxygen-vacancy distribution in RP structures is in fact dictated by the reduction of the cationic A-A/B repulsion. Moreover, the intrinsic oxygen vacancies can capture atmospheric O, consequently resulting in a mixed oxide ion and p-type electrical conductivity of 1.0 × 10 S cm at temperatures > 800 °C. This value could be further enhanced to > 1.0 × 10 S cm by creating additional oxygen vacancies on the equatorial sites through acceptor doping. Bond valence site energy analysis indicates that the oxide ion conduction in SrNdZnO is predominated by the one-dimensional pathways along the [ZnO] ladders and is triggered by the gate-control-like migration of the equatorial bridging oxygens to the oxygen-vacant sites. Our results demonstrate that control of anion and cation ordering in RP perovskites opens a new path toward innovative structure-driven property design.
鲁德尔斯登-波珀(RP)钙钛矿(PV)[AO][ABO]中的氧空位在调控功能特性方面起着关键作用,因此,了解氧空位分布与物理性质之间的关系可为精细调控结构驱动功能开辟新策略。然而,RP结构中氧空位优先分布的结构起源尚未得到很好的理解,特别是在单层( = 1)RP结构中。在此,通过结合三维(3D)电子衍射和中子粉末衍射,合理设计了 = 1的RP相SrNdZnO并对其进行了结构表征。由于A位柱有序化和氧空位阵列有序化的同时出现,SrNdZnO呈现出一种新型的2倍 = 1 RP型 - 超结构。这两种有序模型紧密相连,破坏其中一个就会破坏另一个。与 ≥ 2结构中优先占据内顶点位置形成鲜明对比 的是,氧空位在结构上被限制占据“BO”八面体的赤道位置。RP结构中这种依赖层的氧空位分布实际上是由阳离子A - A/B排斥力的降低所决定的。此外,本征氧空位可以捕获大气中的O,从而在温度> 800 °C时产生1.0 × 10 S cm的混合氧化物离子和p型电导率。通过受体掺杂在赤道位置上产生额外的氧空位,这个值可以进一步提高到> 1.0 × 10 S cm。键价位点能量分析表明,SrNdZnO中的氧化物离子传导主要由沿[ZnO]梯子的一维路径主导,并由赤道桥氧向氧空位位置的类似门控迁移触发。我们的结果表明,控制RP钙钛矿中的阴离子和阳离子有序化开辟了一条通往创新型结构驱动性能设计的新途径。