Lechtenberg Fabian, Istrate Robert, Tulus Victor, Espuña Antonio, Graells Moisès, Guillén-Gosálbez Gonzalo
Department of Chemical Engineering Universitat Politècnica de Catalunya Barcelona Spain.
Institute of Environmental Sciences (CML) Leiden University Leiden Netherlands.
J Ind Ecol. 2024 Dec;28(6):1449-1463. doi: 10.1111/jiec.13561. Epub 2024 Oct 10.
This work presents the PULPO (ython-based ser-defined ifecycle roduct ptimization) framework, developed to efficiently integrate life cycle inventory (LCI) models into life cycle product optimization. Life cycle optimization (LCO), which has found interest in both the process systems engineering and life cycle assessment (LCA) communities, leverages LCA data to go beyond simple assessments of a limited number of alternatives and identify the best possible product systems configuration subject to a manifold of choices, constraints, and objectives. However, typically, aggregated inventories are used to build the optimization problems. Contrary to existing frameworks, PULPO integrates whole LCI databases and user inventories as a backbone for the optimization problem, considering economy-wide feedback loops between fore- and background systems that would otherwise be omitted. The open-source implementation combines functions from Brightway2 for the manipulation of inventory data and pyomo for the formulation and solution of the optimization problem. The advantages of this approach are demonstrated in a case study focusing on the design of optimal future global green methanol production systems from captured CO and electrolytic H. It is shown that the approach can be used to assess sector-coupling with multi-functional processes and prospective background databases that would otherwise be impractical to approach from a standalone LCA perspective. The use of PULPO is particularly appealing when evaluating large-scale decisions that have a strong impact on socioeconomic systems, resulting in changes in the technosphere on which the background system is based and which is often assumed constant in standard LCO approaches regardless of the decisions taken. This article met the requirements for a gold-gold data openness badge described at http://jie.click/badges.
这项工作展示了PULPO(基于Python的自定义生命周期产品优化)框架,该框架旨在将生命周期清单(LCI)模型有效地集成到生命周期产品优化中。生命周期优化(LCO)在过程系统工程和生命周期评估(LCA)领域都受到了关注,它利用LCA数据超越对有限数量替代方案的简单评估,并在众多选择、约束和目标的条件下确定最佳的产品系统配置。然而,通常情况下,汇总清单被用于构建优化问题。与现有框架不同,PULPO将整个LCI数据库和用户清单作为优化问题的核心进行整合,考虑到上下游系统之间的全经济范围反馈回路,否则这些回路会被忽略。开源实现结合了Brightway2用于库存数据处理的功能以及pyomo用于优化问题的公式化和求解的功能。在一个以从捕获的二氧化碳和电解氢设计最优未来全球绿色甲醇生产系统为重点的案例研究中展示了这种方法的优势。结果表明,该方法可用于评估与多功能过程和前瞻性背景数据库的部门耦合,而从独立的LCA角度来看,这些耦合是不切实际的。在评估对社会经济系统有重大影响的大规模决策时,PULPO的使用尤其具有吸引力,这些决策会导致背景系统所基于的技术圈发生变化,而在标准LCO方法中,无论做出何种决策,技术圈通常都被假定为不变。本文符合http://jie.click/badges上描述的金-金数据开放徽章的要求。