Suppr超能文献

银屑病患者中银屑病关节炎的早期检测:多因素预测模型的构建

Early detection of psoriatic arthritis in patients with psoriasis: construction of a multifactorial prediction model.

作者信息

Wang Chunxiao, Wang Sihan, Liu Liu, Wang Jiao, Cai Xiaoce, Zhang Miao, Sun Xiaoying, Li Xin

机构信息

Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.

出版信息

Front Immunol. 2024 Dec 11;15:1426127. doi: 10.3389/fimmu.2024.1426127. eCollection 2024.

Abstract

Psoriatic arthritis (PsA) affects approximately one in five individuals with psoriasis. Early identification of patients with psoriasis at risk of developing PsA is crucial to prevent poor prognosis. We established a derivation cohort comprising 1,661 patients with psoriasis from 49 hospitals. Clinical and demographic variables ascertained at hospital admission were screened using the Least Absolute Shrinkage and Selection Operator and logistic regression to construct a prediction model and a new web-based calculator. Ultimately, six significant independent predictors were identified: history of unexplained swollen joints (odds ratio [OR]: 5.814, 95% confidence interval [95% CI]: 3.304-10.117; p< 0.001), history of arthritis (OR: 3.543, 95% CI: 1.982-6.246; p< 0.001), history of unexplained swollen and painful fingers or toes (OR: 2.707, 95% CI: 1.463-4.915; p = 0.001), nail involvement (OR: 1.907, 95% CI: 1.235-2.912; p = 0.003), hyperlipidemia (OR: 4.265, 95% CI: 0.921-15.493; p = 0.042), and prolonged topical use of glucocorticosteroids (OR: 1.581, 95% CI: 1.052-2.384, p = 0.028). The web-based calculator derived from this model can assist clinicians in promptly determining the probability of developing PsA in patients with psoriasis, thereby facilitating improved clinical decision-making.

摘要

银屑病关节炎(PsA)影响着约五分之一的银屑病患者。尽早识别有发展为PsA风险的银屑病患者对于预防不良预后至关重要。我们建立了一个来自49家医院的1661例银屑病患者的推导队列。使用最小绝对收缩和选择算子以及逻辑回归对入院时确定的临床和人口统计学变量进行筛选,以构建预测模型和一个新的基于网络的计算器。最终,确定了六个显著的独立预测因素:不明原因的关节肿胀史(比值比[OR]:5.814,95%置信区间[95%CI]:3.304 - 10.117;p < 0.001)、关节炎病史(OR:3.543,95%CI:1.982 - 6.246;p < 0.001)、不明原因的手指或脚趾肿胀疼痛史(OR:2.707,95%CI:1.463 - 4.915;p = 0.001)、指甲受累(OR:1.907,95%CI:1.235 - 2.912;p = 0.003)、高脂血症(OR:4.265,95%CI:0.921 - 15.493;p = 0.042)以及长期局部使用糖皮质激素(OR:1.581,95%CI:1.052 - 2.384,p = 0.028)。基于该模型的网络计算器可帮助临床医生迅速确定银屑病患者发展为PsA的概率,从而促进更好的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6327/11668630/25c0ba258706/fimmu-15-1426127-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验