Harmer Zachary P, McClean Megan N
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
Methods Mol Biol. 2025;2840:19-36. doi: 10.1007/978-1-0716-4047-0_2.
Optogenetic systems utilize genetically encoded light-sensitive proteins to control cellular processes such as gene expression and protein localization. Like most synthetic systems, generation of an optogenetic system with desirable properties requires multiple design-test-build cycles. A yeast optogenetic toolkit (yOTK) allows rapid assembly of optogenetic constructs using Modular Cloning, or MoClo. In this protocol, we describe how to assemble, integrate, and test optogenetic systems in the budding yeast Saccharomyces cerevisiae. Generating an optogenetic system requires the user to first define the structure of the final construct and identify all basic parts and vectors required for the construction strategy, including light-sensitive proteins that need to be domesticated into the toolkit. The assembly is then defined following a set of standard rules. Multigene constructs are assembled using a series of one-pot assembly steps with the identified parts and vectors and transformed into yeast. Screening of the transformants allows optogenetic systems with optimal properties to be selected.
光遗传学系统利用基因编码的光敏蛋白来控制细胞过程,如基因表达和蛋白质定位。与大多数合成系统一样,生成具有理想特性的光遗传学系统需要多个设计-测试-构建循环。酵母光遗传学工具包(yOTK)允许使用模块化克隆(即MoClo)快速组装光遗传学构建体。在本方案中,我们描述了如何在出芽酵母酿酒酵母中组装、整合和测试光遗传学系统。生成光遗传学系统要求用户首先定义最终构建体的结构,并确定构建策略所需的所有基本部件和载体,包括需要整合到工具包中的光敏蛋白。然后按照一组标准规则进行组装。使用一系列一锅法组装步骤,将已鉴定的部件和载体组装成多基因构建体,并转化到酵母中。对转化体进行筛选,以选择具有最佳特性的光遗传学系统。