Suppr超能文献

用于预测化学品毒代动力学和物理化学性质的计算工具的综合基准测试。

Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals.

作者信息

Gadaleta Domenico, Serrano-Candelas Eva, Ortega-Vallbona Rita, Colombo Erika, Garcia de Lomana Marina, Biava Giada, Aparicio-Sánchez Pablo, Roncaglioni Alessandra, Gozalbes Rafael, Benfenati Emilio

机构信息

Laboratory of Environmental Chemistry and Toxicology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

ProtoQSAR SL, CEEI (Centro Europeo de Empresas Innovadoras), 46980, Paterna, Valencia, Spain.

出版信息

J Cheminform. 2024 Dec 26;16(1):145. doi: 10.1186/s13321-024-00931-z.

Abstract

Ensuring the safety of chemicals for environmental and human health involves assessing physicochemical (PC) and toxicokinetic (TK) properties, which are crucial for absorption, distribution, metabolism, excretion, and toxicity (ADMET). Computational methods play a vital role in predicting these properties, given the current trends in reducing experimental approaches, especially those that involve animal experimentation. In the present manuscript, twelve software tools implementing Quantitative Structure-Activity Relationship (QSAR) models were selected for the prediction of 17 relevant PC and TK properties. A total of 41 validation datasets were collected from the literature, curated and used for assessing the models' external predictivity, emphasizing the performance of the models inside the applicability domain. Overall, the results confirmed the adequate predictive performance of the majority of the selected tools, with models for PC properties (R average = 0.717) generally outperforming those for TK properties (R average = 0.639 for regression, average balanced accuracy = 0.780 for classification). Notably, several of the tools evaluated exhibited good predictivity across different properties and were identified as recurring optimal choices. Moreover, a systematic analysis of the chemical space covered by the external validation datasets confirmed the validity of the collected results for relevant chemical categories (e.g., drugs and industrial chemicals), further increasing the confidence in the overall evaluation. The best performing models were ultimately suggested for each investigated property and proposed as robust computational tools for high-throughput assessment of highly relevant chemical properties. SCIENTIFIC CONTRIBUTION: The present manuscript provides an overview of the state-of-the-art available computational tools for predicting the PC and TK properties of chemicals. The results here offer valuable guidance to researchers, regulatory authorities, and the industry in identifying robust computational tools suitable for predicting relevant chemical properties in the context of chemical design, toxicity and environmental fate assessment.

摘要

确保化学品对环境和人类健康的安全性涉及评估物理化学(PC)和毒代动力学(TK)特性,这些特性对于吸收、分布、代谢、排泄和毒性(ADMET)至关重要。鉴于目前减少实验方法的趋势,尤其是那些涉及动物实验的方法,计算方法在预测这些特性方面发挥着至关重要的作用。在本手稿中,选择了12个实施定量构效关系(QSAR)模型的软件工具来预测17种相关的PC和TK特性。从文献中收集了总共41个验证数据集,进行整理并用于评估模型的外部预测能力,重点强调模型在适用域内的性能。总体而言,结果证实了大多数所选工具具有足够的预测性能,PC特性模型(平均R = 0.717)通常优于TK特性模型(回归平均R = 0.639,分类平均平衡准确率 = 0.780)。值得注意的是,评估的几个工具在不同特性上均表现出良好的预测能力,并被确定为反复出现的最佳选择。此外,对外部验证数据集所涵盖的化学空间进行的系统分析证实了所收集结果对于相关化学类别(如药物和工业化学品)的有效性,进一步增强了对整体评估的信心。最终针对每个研究特性提出了性能最佳的模型,并将其作为用于高通量评估高度相关化学特性的强大计算工具。科学贡献:本手稿概述了用于预测化学品PC和TK特性的现有先进计算工具。此处的结果为研究人员、监管机构和行业在识别适用于在化学设计、毒性和环境归宿评估背景下预测相关化学特性的强大计算工具方面提供了有价值的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d4ff/11674477/a90a32c4b5e3/13321_2024_931_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验