Zubair Muhammad, Shen Lin, Hyeong Lee Tae, Qian Yongteng, Joon Kang Dae
Department of Physics, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
ChemSusChem. 2025 May 5;18(9):e202402294. doi: 10.1002/cssc.202402294. Epub 2025 Jan 16.
The oxygen evolution reaction (OER) is a critical challenge in electrocatalytic water splitting, hindered by high energy demands and slow kinetics. Polyoxometalates (POMs), recognized for their unique redox capabilities, structural archetypes, and molecular precision, are promising candidates for the oxygen evolution reaction (OER). Yet, their application is hindered by high water solubility, causing rapid degradation and efficiency loss under harsh OER conditions. This study enhances the performance and stability of polyoxometalates (POMs) for OER by anchoring keggin-type POM [TiCoWO] nanosheets onto a conductive, carbon-protected manganese oxide (C-MnO) nanospheres support. The acquired porous framework enhances POM/C-Mn₂O₃ (PCM) contact, improving stability, reaction kinetics, and redox activity by offering nucleation sites, electronic pathways, and abundant active sites, significantly boosting OER activity. The resulting PCM nanohybrid demonstrates remarkable OER activity in 1 M KOH, requiring only a 300 mV overpotential to achieve a current density of 10 mA cm with a Tafel slope of 88 mV/dec. The PCM electrocatalyst also shows high mass activity (784 A/g at 1.6 V) and maintains stability over 100 hours at 100 mA cm without performance fatigue. Consequently, this study offers a viable strategy for developing efficient, durable electrocatalysts using low-cost materials.
析氧反应(OER)是电催化水分解中的一项关键挑战,受到高能量需求和缓慢动力学的阻碍。多金属氧酸盐(POMs)因其独特的氧化还原能力、结构原型和分子精确性而受到认可,是析氧反应(OER)的有前途的候选材料。然而,它们的应用受到高水溶性的阻碍,在苛刻的OER条件下会导致快速降解和效率损失。本研究通过将开格型POM [TiCoWO] 纳米片锚定在导电的、碳保护的氧化锰(C-MnO)纳米球载体上,提高了多金属氧酸盐(POMs)用于OER的性能和稳定性。所获得的多孔框架增强了POM/C-Mn₂O₃(PCM)的接触,通过提供成核位点、电子通路和丰富的活性位点来提高稳定性、反应动力学和氧化还原活性,显著提高了OER活性。所得的PCM纳米杂化物在1 M KOH中表现出显著的OER活性,仅需300 mV的过电位即可实现10 mA cm²的电流密度,塔菲尔斜率为88 mV/dec。PCM电催化剂还显示出高质量活性(在1.6 V时为784 A/g),并在100 mA cm²下保持100小时以上的稳定性而无性能疲劳。因此,本研究提供了一种使用低成本材料开发高效、耐用的电催化剂的可行策略。