Chen Hsin-Yu, Michele Daniel E
Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States.
Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States.
Am J Physiol Cell Physiol. 2025 Feb 1;328(2):C429-C439. doi: 10.1152/ajpcell.00507.2024. Epub 2024 Dec 26.
Plasma membrane repair (PMR) restores membrane integrity of cells, preventing cell death in vital organs, and has been studied extensively in skeletal muscle. Dysferlin, a sarcolemmal Ca-binding protein, plays a crucial role in PMR in skeletal muscle. Previous studies have suggested that PMR uses membrane trafficking and membrane fusion, similar to neurotransmission. Soluble -ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate membrane fusion in neurotransmission with the help of synaptotagmin, a crucial Ca-binding protein. Interestingly, dysferlin shares structural similarity with synaptotagmin and was shown to promote SNARE-mediated membrane fusion in a liposome-based assay. However, whether dysferlin facilitates SNARE-mediated membrane fusion in PMR in muscle cells remains unclear. In this study, we aimed to test if SNARE-mediated PMR requires dysferlin in muscle cells with pharmacological and genetic approaches. TAT-NSF700, which disrupts the disassembly of SNARE complexes, was used to disrupt functions of SNAREs in muscle cells. We found that human-induced pluripotent stem cells-derived cardiomyocytes (hiPS-CMs) treated with TAT-NSF700 showed a higher loss of membrane integrity after repetitive mechanical strains. Moreover, laser-wounded mouse flexor digitorum brevis (FDB) fibers treated with TAT-NSF700 showed an increased Ca influx, but a decreased FM1-43 uptake, which depends on dynamin-regulated endocytosis as we previously showed in FDB fibers. Importantly, overexpression of STX4-mCitrine or eGFP-SNAP23 decreased Ca influx in laser-wounded FDB fibers. Furthermore, overexpression of STX4-mCitrine also decreased Ca influx in laser-wounded dysferlin-deficient FDB fibers. Overall, these results suggest that disassembly of SNARE complexes is required for efficient PMR and STX4-enhanced PMR does not require dysferlin in skeletal muscle. Dysferlin, a crucial Ca-binding protein in plasma membrane repair (PMR), shares homology with synaptotagmin, which binds Ca and regulates SNARE-mediated vesicle fusion in neurons. Dysferlin was thus hypothesized to function as synaptotagmin in PMR. We demonstrate here that the activity of SNAREs is important for PMR, and overexpression of STX4 enhances PMR in both intact and dysferlin-deficient skeletal muscle. These data suggest that SNARE-mediated PMR may be independent of dysferlin in skeletal muscle.
质膜修复(PMR)可恢复细胞的膜完整性,防止重要器官中的细胞死亡,并且已经在骨骼肌中得到了广泛研究。dysferlin是一种肌膜钙结合蛋白,在骨骼肌的质膜修复中起着关键作用。先前的研究表明,质膜修复利用膜运输和膜融合,类似于神经传递。可溶性N - 乙基马来酰亚胺敏感因子附着蛋白受体(SNAREs)在关键钙结合蛋白突触结合蛋白的帮助下介导神经传递中的膜融合。有趣的是,dysferlin与突触结合蛋白具有结构相似性,并且在基于脂质体的试验中显示可促进SNARE介导的膜融合。然而,dysferlin是否在肌肉细胞质膜修复中促进SNARE介导的膜融合仍不清楚。在本研究中,我们旨在用药理学和遗传学方法测试在肌肉细胞中SNARE介导的质膜修复是否需要dysferlin。TAT - NSF700可破坏SNARE复合物的拆解,用于破坏肌肉细胞中SNAREs的功能。我们发现,用TAT - NSF700处理的人诱导多能干细胞衍生的心肌细胞(hiPS - CMs)在反复机械应变后显示出更高的膜完整性丧失。此外,用TAT - NSF700处理的激光损伤的小鼠趾短屈肌(FDB)纤维显示钙内流增加,但FM1 - 43摄取减少,这取决于发动蛋白调节的内吞作用,正如我们之前在FDB纤维中所显示的那样。重要的是,STX4 - mCitrine或eGFP - SNAP23的过表达降低了激光损伤的FDB纤维中的钙内流。此外,STX4 - mCitrine的过表达也降低了激光损伤的dysferlin缺陷型FDB纤维中的钙内流。总体而言,这些结果表明SNARE复合物的拆解对于有效的质膜修复是必需的,并且STX4增强的质膜修复在骨骼肌中不需要dysferlin。Dysferlin是质膜修复(PMR)中的一种关键钙结合蛋白,与突触结合蛋白具有同源性,突触结合蛋白在神经元中结合钙并调节SNARE介导的囊泡融合。因此,推测dysferlin在质膜修复中起突触结合蛋白的作用。我们在此证明SNAREs的活性对质膜修复很重要,并且STX4的过表达在完整和dysferlin缺陷的骨骼肌中均增强了质膜修复。这些数据表明,在骨骼肌中SNARE介导的质膜修复可能独立于dysferlin。