Qin Zhao, Destree Aymeric Pierre
Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA.
Department of Civil and Environmental Engineering, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA.
Adv Mater. 2025 Jun;37(22):e2414970. doi: 10.1002/adma.202414970. Epub 2024 Dec 27.
Bamboo culm has been widely used in engineering for its high strength, lightweight, and low cost. Its outermost epidermis is a smooth and dense layer that contains cellulose, silica particles, and stomata and acts as a water and mechanical barrier. Recent experimental studies have shown that the layer has a higher mechanical strength than other inside regions. Still, the mechanism is unclear, especially for how the low silica concentration (<10%) can effectively reinforce the layer and prevent the inner fibers from splitting. Here, theoretical analysis is combined with experimental imaging and 3D printing to investigate the effect of the distribution of silica particles on composite mechanics. The anisotropic partial distribution function of silica particles in bamboo skin yields higher toughness (>10%) than randomly distributed particles. A generative artificial intelligence (AI) model inspired by bamboo epidermis is developed to generate particle-reinforced composites. Besides the visual similarity, it is found that the samples by the generative model show failure processes and fracture toughness identical to the actual bamboo epidermis. This work reveals the micromechanics of the bamboo epidermis. It illustrates that generative AI can help design bio-inspired composites of a complex structure that cannot be uniformly represented by a simple building block or optimized around local boundaries. It expands the design space of particle-reinforced composites for enhanced toughness modulus, offering advantages in industries where mechanical reliability is critical.
竹杆因其高强度、轻质和低成本而在工程领域得到广泛应用。其最外层表皮是一层光滑致密的层,含有纤维素、二氧化硅颗粒和气孔,起到水和机械屏障的作用。最近的实验研究表明,该层的机械强度高于其他内部区域。然而,其机制尚不清楚,特别是低二氧化硅浓度(<10%)如何能有效地增强该层并防止内部纤维分裂。在此,将理论分析与实验成像和3D打印相结合,以研究二氧化硅颗粒分布对复合材料力学性能的影响。竹皮中二氧化硅颗粒的各向异性部分分布函数产生的韧性(>10%)高于随机分布的颗粒。受竹表皮启发,开发了一种生成式人工智能(AI)模型来生成颗粒增强复合材料。除了视觉上的相似性外,还发现生成模型生成的样品显示出与实际竹表皮相同的失效过程和断裂韧性。这项工作揭示了竹表皮的微观力学。它表明生成式人工智能有助于设计具有复杂结构的仿生复合材料,这种结构无法由简单的构建块统一表示,也无法围绕局部边界进行优化。它扩展了用于提高韧性模量的颗粒增强复合材料的设计空间,在机械可靠性至关重要的行业中具有优势。