Suppr超能文献

生成化学的出现。

The Advent of Generative Chemistry.

作者信息

Vanhaelen Quentin, Lin Yen-Chu, Zhavoronkov Alex

机构信息

Insilico Medicine Hong Kong Ltd, Pak Shek Kok, New Territories, Hong Kong.

Insilico Taiwan, Taipei City 115, Taiwan, R.O.C.

出版信息

ACS Med Chem Lett. 2020 Jul 14;11(8):1496-1505. doi: 10.1021/acsmedchemlett.0c00088. eCollection 2020 Aug 13.

Abstract

Generative adversarial networks (GANs), first published in 2014, are among the most important concepts in modern artificial intelligence (AI). Bridging deep learning and game theory, GANs are used to generate or "imagine" new objects with desired properties. Since 2016, multiple GANs with reinforcement learning (RL) have been successfully applied in pharmacology for molecular design. Those techniques aim at a more efficient use of the data and a better exploration of the chemical space. We review recent advances for the generation of novel molecules with desired properties with a focus on the applications of GANs, RL, and related techniques. We also discuss the current limitations and challenges in the new growing field of generative chemistry.

摘要

生成对抗网络(GANs)于2014年首次发表,是现代人工智能(AI)中最重要的概念之一。GANs将深度学习与博弈论相结合,用于生成或“想象”具有所需属性的新对象。自2016年以来,多种带有强化学习(RL)的GANs已成功应用于药理学中的分子设计。这些技术旨在更有效地利用数据并更好地探索化学空间。我们回顾了利用GANs、RL及相关技术生成具有所需属性的新型分子的最新进展。我们还讨论了生成化学这一新兴领域当前的局限性和挑战。

相似文献

1
The Advent of Generative Chemistry.
ACS Med Chem Lett. 2020 Jul 14;11(8):1496-1505. doi: 10.1021/acsmedchemlett.0c00088. eCollection 2020 Aug 13.
3
Navigating the frontier of drug-like chemical space with cutting-edge generative AI models.
Drug Discov Today. 2024 Sep;29(9):104133. doi: 10.1016/j.drudis.2024.104133. Epub 2024 Aug 3.
4
Artificial intelligence for aging and longevity research: Recent advances and perspectives.
Ageing Res Rev. 2019 Jan;49:49-66. doi: 10.1016/j.arr.2018.11.003. Epub 2018 Nov 22.
7
De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.
J Chem Inf Model. 2022 Feb 28;62(4):761-774. doi: 10.1021/acs.jcim.1c01361. Epub 2022 Feb 7.
8
A survey on generative adversarial networks for imbalance problems in computer vision tasks.
J Big Data. 2021;8(1):27. doi: 10.1186/s40537-021-00414-0. Epub 2021 Jan 29.
9
Generative Adversarial Networks in Medicine: Important Considerations for this Emerging Innovation in Artificial Intelligence.
Ann Biomed Eng. 2023 Oct;51(10):2130-2142. doi: 10.1007/s10439-023-03304-z. Epub 2023 Jul 24.
10
Generative adversarial networks in ophthalmology: what are these and how can they be used?
Curr Opin Ophthalmol. 2021 Sep 1;32(5):459-467. doi: 10.1097/ICU.0000000000000794.

引用本文的文献

1
Applications of Artificial Intelligence in Biotech Drug Discovery and Product Development.
MedComm (2020). 2025 Jul 30;6(8):e70317. doi: 10.1002/mco2.70317. eCollection 2025 Aug.
3
AI-Driven Design and Development of Nontoxic DYRK1A Inhibitors.
J Med Chem. 2025 May 22;68(10):10346-10364. doi: 10.1021/acs.jmedchem.5c00512. Epub 2025 May 3.
5
Artificial intelligence in drug development.
Nat Med. 2025 Jan;31(1):45-59. doi: 10.1038/s41591-024-03434-4. Epub 2025 Jan 20.
7
The Structure-Mechanics Relationship of Bamboo-Epidermis and Inspired Composite Design by Artificial Intelligence.
Adv Mater. 2025 Jun;37(22):e2414970. doi: 10.1002/adma.202414970. Epub 2024 Dec 27.
8
Utilizing AI for the Identification and Validation of Novel Therapeutic Targets and Repurposed Drugs for Endometriosis.
Adv Sci (Weinh). 2025 Feb;12(5):e2406565. doi: 10.1002/advs.202406565. Epub 2024 Dec 12.
9
A systematic review of deep learning chemical language models in recent era.
J Cheminform. 2024 Nov 18;16(1):129. doi: 10.1186/s13321-024-00916-y.
10
Empowering precision medicine: regenerative AI in breast cancer.
Front Oncol. 2024 Sep 20;14:1465720. doi: 10.3389/fonc.2024.1465720. eCollection 2024.

本文引用的文献

1
Mol-CycleGAN: a generative model for molecular optimization.
J Cheminform. 2020 Jan 8;12(1):2. doi: 10.1186/s13321-019-0404-1.
2
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models.
Front Pharmacol. 2020 Dec 18;11:565644. doi: 10.3389/fphar.2020.565644. eCollection 2020.
3
Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders.
Front Pharmacol. 2020 Apr 17;11:269. doi: 10.3389/fphar.2020.00269. eCollection 2020.
4
Assessing the impact of generative AI on medicinal chemistry.
Nat Biotechnol. 2020 Feb;38(2):143-145. doi: 10.1038/s41587-020-0418-2.
5
Deep learning enables rapid identification of potent DDR1 kinase inhibitors.
Nat Biotechnol. 2019 Sep;37(9):1038-1040. doi: 10.1038/s41587-019-0224-x. Epub 2019 Sep 2.
6
Automated De Novo Drug Design: Are We Nearly There Yet?
Angew Chem Int Ed Engl. 2019 Aug 5;58(32):10792-10803. doi: 10.1002/anie.201814681. Epub 2019 May 17.
7
Ultra-large library docking for discovering new chemotypes.
Nature. 2019 Feb;566(7743):224-229. doi: 10.1038/s41586-019-0917-9. Epub 2019 Feb 6.
8
Deep learning for molecular generation.
Future Med Chem. 2019 Mar;11(6):567-597. doi: 10.4155/fmc-2018-0358. Epub 2019 Jan 30.
9
Organic synthesis in a modular robotic system driven by a chemical programming language.
Science. 2019 Jan 11;363(6423). doi: 10.1126/science.aav2211. Epub 2018 Nov 29.
10
Artificial intelligence for aging and longevity research: Recent advances and perspectives.
Ageing Res Rev. 2019 Jan;49:49-66. doi: 10.1016/j.arr.2018.11.003. Epub 2018 Nov 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验