Suppr超能文献

用于术后肺炎预测的可解释机器学习模型的开发与验证

Development and validation of interpretable machine learning models for postoperative pneumonia prediction.

作者信息

Xiang Bingbing, Liu Yiran, Jiao Shulan, Zhang Wensheng, Wang Shun, Yi Mingliang

机构信息

Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.

Nursing Department, Chengfei Hospital, Chengdu, China.

出版信息

Front Public Health. 2024 Dec 11;12:1468504. doi: 10.3389/fpubh.2024.1468504. eCollection 2024.

Abstract

BACKGROUND

Postoperative pneumonia, a prevalent form of hospital-acquired pneumonia, poses significant risks to patients' prognosis and even their lives. This study aimed to develop and validate a predictive model for postoperative pneumonia in surgical patients using nine machine learning methods.

OBJECTIVE

Our study aims to develop and validate a predictive model for POP in surgical patients using nine machine learning algorithms. By evaluating the performance differences among these machine learning models, this study aims to assist clinicians in early prediction and diagnosis of POP, providing optimal interventions and treatments.

METHODS

Retrospective data from electronic medical records was collected for 264 patients diagnosed with postoperative pneumonia and 264 healthy control surgical patients. Through correlation screening, chi-square tests, and feature importance ranking, 47 variables were narrowed down to 5 potential predictive factors based on the main cohort of 528 patients. Nine machine learning models, including k-nearest neighbors, support vector machine, random forest, decision tree, gradient boosting machine, adaptive boosting, naive bayes, general linear model, and linear discriminant analysis, were developed and validated to predict postoperative pneumonia. Model performance was evaluated using the area under the receiver operating curve, sensitivity, specificity, accuracy, precision, recall, and F1 score. A distribution plot of feature importance and feature interaction was obtained to interpret the machine learning models.

RESULTS

Among 17,190 surgical patients, 264 (1.54%) experienced postoperative pneumonia, which resulted in adverse outcomes such as prolonged hospital stay, increased ICU admission rates, and mortality. We successfully established nine machine learning models for predicting postoperative pneumonia in surgical patients, with the general linear model demonstrating the best overall performance. The AUC of the general linear model on the testing set was 0.877, with an accuracy of 0.82, specificity of 0.89, sensitivity of 0.74, precision of 0.88, and F1 score of 0.80. Our study revealed that the duration of bed rest, unplanned re-operation, end-tidal CO2, postoperative albumin, and chest X-ray film were significant predictors of postoperative pneumonia.

CONCLUSION

Our study firstly demonstrated that the general linear model based on 5 common variables might predict postoperative pneumonia in the general surgical population.

摘要

背景

术后肺炎是医院获得性肺炎的一种常见形式,对患者的预后甚至生命构成重大风险。本研究旨在使用九种机器学习方法开发并验证一种针对外科手术患者术后肺炎的预测模型。

目的

我们的研究旨在使用九种机器学习算法开发并验证一种针对外科手术患者术后肺炎(POP)的预测模型。通过评估这些机器学习模型之间的性能差异,本研究旨在帮助临床医生早期预测和诊断POP,提供最佳干预措施和治疗方法。

方法

收集了264例诊断为术后肺炎的患者和264例健康对照外科手术患者的电子病历回顾性数据。通过相关性筛选、卡方检验和特征重要性排序,在528例患者的主要队列基础上,将47个变量缩小至5个潜在预测因素。开发并验证了九种机器学习模型,包括k近邻、支持向量机、随机森林、决策树、梯度提升机、自适应提升、朴素贝叶斯、广义线性模型和线性判别分析,以预测术后肺炎。使用受试者工作特征曲线下面积、敏感性、特异性、准确性、精确性、召回率和F1分数评估模型性能。获得了特征重要性和特征交互的分布图以解释机器学习模型。

结果

在17190例外科手术患者中,264例(1.54%)发生了术后肺炎,导致住院时间延长、重症监护病房(ICU)入住率增加和死亡率等不良后果。我们成功建立了九种用于预测外科手术患者术后肺炎的机器学习模型,其中广义线性模型表现出最佳的整体性能。广义线性模型在测试集上的AUC为0.877,准确性为0.82,特异性为0.89,敏感性为0.74,精确性为0.88,F1分数为0.80。我们的研究表明,卧床休息时间、非计划性再次手术、呼气末二氧化碳、术后白蛋白和胸部X光片是术后肺炎的重要预测因素。

结论

我们的研究首次表明,基于5个常见变量的广义线性模型可能预测普通外科人群中的术后肺炎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f012/11670315/304822bbf5f7/fpubh-12-1468504-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验