Department of Geographical and Historical Studies, University of Eastern Finland, Joensuu, Finland; Department of Geography and Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC.
Spatial Science for Public Health Center, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.
Ann Epidemiol. 2022 Jan;65:15-30. doi: 10.1016/j.annepidem.2021.10.002. Epub 2021 Oct 14.
Uncertainty is not always well captured, understood, or modeled properly, and can bias the robustness of complex relationships, such as the association between the environment and public health through exposure, estimates of geographic accessibility and cluster detection, to name a few.
We review current challenges and future opportunities as geospatial data and analyses are applied to the field of public health. We are particularly interested in the sources of uncertainty in geospatial data and how this uncertainty may propagate in spatial analysis.
We present opportunities to reduce the magnitude and impact of uncertainty. Specifically, we focus on (1) the use of multiple reference data sources to reduce geocoding errors, (2) the validity of online geocoders and how confidentiality (e.g., HIPAA) may be breached, (3) use of multiple reference data sources to reduce geocoding errors, (4) the impact of geoimputation techniques on travel estimates, (5) residential mobility and how it affects accessibility metrics and clustering, and (6) modeling errors in the American Community Survey. Our paper discusses how to communicate spatial and spatiotemporal uncertainty, and high-performance computing to conduct large amounts of simulations to ultimately increase statistical robustness for studies in public health.
Our paper contributes to recent efforts to fill in knowledge gaps at the intersection of spatial uncertainty and public health.
不确定性并不总是能够被很好地捕捉、理解或建模,并且可能会影响复杂关系的稳健性,例如通过暴露、地理可达性估计和聚类检测等方式将环境与公共卫生联系起来。
我们回顾了当前的挑战和未来的机会,因为地理空间数据和分析被应用于公共卫生领域。我们特别关注地理空间数据中的不确定性来源,以及这种不确定性如何在空间分析中传播。
我们提出了减少不确定性的幅度和影响的机会。具体来说,我们专注于以下几点:(1)使用多个参考数据源减少地理编码错误;(2)在线地理编码器的有效性以及保密性(例如 HIPAA)可能被破坏的情况;(3)使用多个参考数据源减少地理编码错误;(4)地理插值技术对出行估计的影响;(5)居住流动性以及其如何影响可达性指标和聚类;(6)美国社区调查中的建模误差。我们的论文讨论了如何传达空间和时空不确定性,以及高性能计算以进行大量模拟,最终为公共卫生研究提高统计稳健性。
我们的论文有助于填补空间不确定性和公共卫生交叉领域知识空白的最新努力。