Suppr超能文献

用于从多元函数数据中进行因果发现的有向循环图。

Directed Cyclic Graph for Causal Discovery from Multivariate Functional Data.

作者信息

Roy Saptarshi, Wong Raymond K W, Ni Yang

机构信息

Department of Statistics Texas A&M University College Station, TX 77843.

出版信息

Adv Neural Inf Process Syst. 2023;36:42762-42774. Epub 2024 May 30.

Abstract

Discovering causal relationship using multivariate functional data has received a significant amount of attention very recently. In this article, we introduce a functional linear structural equation model for causal structure learning when the underlying graph involving the multivariate functions may have cycles. To enhance interpretability, our model involves a low-dimensional causal embedded space such that all the relevant causal information in the multivariate functional data is preserved in this lower-dimensional subspace. We prove that the proposed model is causally identifiable under standard assumptions that are often made in the causal discovery literature. To carry out inference of our model, we develop a fully Bayesian framework with suitable prior specifications and uncertainty quantification through posterior summaries. We illustrate the superior performance of our method over existing methods in terms of causal graph estimation through extensive simulation studies. We also demonstrate the proposed method using a brain EEG dataset.

摘要

最近,使用多元函数数据发现因果关系受到了大量关注。在本文中,我们引入了一种函数线性结构方程模型,用于在涉及多元函数的基础图可能存在环的情况下进行因果结构学习。为了提高可解释性,我们的模型包含一个低维因果嵌入空间,使得多元函数数据中的所有相关因果信息都保存在这个低维子空间中。我们证明,在因果发现文献中经常做出的标准假设下,所提出的模型在因果关系上是可识别的。为了对我们的模型进行推断,我们开发了一个完全贝叶斯框架,通过合适的先验设定和后验总结进行不确定性量化。通过广泛的模拟研究,我们展示了我们的方法在因果图估计方面优于现有方法的性能。我们还使用一个脑电数据集演示了所提出的方法。

相似文献

9
Prior and posterior checking of implicit causal assumptions.潜在因果假设的前后核查。
Biometrics. 2023 Dec;79(4):3153-3164. doi: 10.1111/biom.13886. Epub 2023 Jun 16.

本文引用的文献

2
Functional Structural Equation Model.功能结构方程模型
J R Stat Soc Series B Stat Methodol. 2022 Apr;84(2):600-629. doi: 10.1111/rssb.12471. Epub 2022 Mar 21.
3
Bayesian cumulative shrinkage for infinite factorizations.用于无限分解的贝叶斯累积收缩法。
Biometrika. 2020 Sep;107(3):745-752. doi: 10.1093/biomet/asaa008. Epub 2020 May 27.
4
FSEM: Functional Structural Equation Models for Twin Functional Data.FSEM:双变量功能数据的功能结构方程模型
J Am Stat Assoc. 2019;114(525):344-357. doi: 10.1080/01621459.2017.1407773. Epub 2018 Jul 9.
7
Sparse Bayesian infinite factor models.稀疏贝叶斯无限因子模型
Biometrika. 2011 Jun;98(2):291-306. doi: 10.1093/biomet/asr013.
9
Functional and effective connectivity: a review.功能连接和有效连接:综述。
Brain Connect. 2011;1(1):13-36. doi: 10.1089/brain.2011.0008.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验