Roy Saptarshi, Wong Raymond K W, Ni Yang
Department of Statistics Texas A&M University College Station, TX 77843.
Adv Neural Inf Process Syst. 2023;36:42762-42774. Epub 2024 May 30.
Discovering causal relationship using multivariate functional data has received a significant amount of attention very recently. In this article, we introduce a functional linear structural equation model for causal structure learning when the underlying graph involving the multivariate functions may have cycles. To enhance interpretability, our model involves a low-dimensional causal embedded space such that all the relevant causal information in the multivariate functional data is preserved in this lower-dimensional subspace. We prove that the proposed model is causally identifiable under standard assumptions that are often made in the causal discovery literature. To carry out inference of our model, we develop a fully Bayesian framework with suitable prior specifications and uncertainty quantification through posterior summaries. We illustrate the superior performance of our method over existing methods in terms of causal graph estimation through extensive simulation studies. We also demonstrate the proposed method using a brain EEG dataset.
最近,使用多元函数数据发现因果关系受到了大量关注。在本文中,我们引入了一种函数线性结构方程模型,用于在涉及多元函数的基础图可能存在环的情况下进行因果结构学习。为了提高可解释性,我们的模型包含一个低维因果嵌入空间,使得多元函数数据中的所有相关因果信息都保存在这个低维子空间中。我们证明,在因果发现文献中经常做出的标准假设下,所提出的模型在因果关系上是可识别的。为了对我们的模型进行推断,我们开发了一个完全贝叶斯框架,通过合适的先验设定和后验总结进行不确定性量化。通过广泛的模拟研究,我们展示了我们的方法在因果图估计方面优于现有方法的性能。我们还使用一个脑电数据集演示了所提出的方法。