Uchigashima Motokazu, Mikuni Takayasu
Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan.
International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan.
Front Neural Circuits. 2024 Dec 11;18:1523614. doi: 10.3389/fncir.2024.1523614. eCollection 2024.
Our brain adapts to the environment by optimizing its function through experience-dependent cortical plasticity. This plasticity is transiently enhanced during a developmental stage, known as the "critical period," and subsequently maintained at lower levels throughout adulthood. Thus, understanding the mechanism underlying critical period plasticity is crucial for improving brain adaptability across the lifespan. Critical period plasticity relies on activity-dependent circuit remodeling through anatomical and functional changes at individual synapses. However, it remains challenging to identify the molecular signatures of synapses responsible for critical period plasticity and to understand how these plasticity-related synapses are spatiotemporally organized within a neuron. Recent advances in genetic tools and genome editing methodologies have enabled single-cell endogenous protein labeling in the brain, allowing for comprehensive molecular profiling of individual synapses within a neuron, namely "single-cell synaptome mapping." This promising approach can facilitate insights into the spatiotemporal organization of synapses that are sparse yet functionally important within single neurons. In this review, we introduce the basics of single-cell synaptome mapping and discuss its methodologies and applications to investigate the synaptic and cellular mechanisms underlying circuit remodeling during the critical period.
我们的大脑通过依赖经验的皮质可塑性优化其功能来适应环境。这种可塑性在一个被称为“关键期”的发育阶段会短暂增强,随后在成年期维持在较低水平。因此,了解关键期可塑性的潜在机制对于提高整个生命周期的大脑适应性至关重要。关键期可塑性依赖于通过单个突触的解剖和功能变化进行的依赖活动的回路重塑。然而,确定负责关键期可塑性的突触的分子特征以及了解这些与可塑性相关的突触如何在神经元内进行时空组织仍然具有挑战性。遗传工具和基因组编辑方法的最新进展使得能够在大脑中进行单细胞内源性蛋白质标记,从而对神经元内的单个突触进行全面的分子分析,即“单细胞突触组图谱绘制”。这种有前景的方法可以促进对单个神经元内稀疏但功能重要的突触的时空组织的深入了解。在这篇综述中,我们介绍单细胞突触组图谱绘制的基础知识,并讨论其方法及其在研究关键期回路重塑的突触和细胞机制方面的应用。