Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada.
Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada.
Trends Pharmacol Sci. 2023 Mar;44(3):175-189. doi: 10.1016/j.tips.2022.12.005. Epub 2023 Jan 18.
Due to their high target specificity and binding affinity, therapeutic antibodies are currently the largest class of biotherapeutics. The traditional largely empirical antibody development process is, while mature and robust, cumbersome and has significant limitations. Substantial recent advances in computational and artificial intelligence (AI) technologies are now starting to overcome many of these limitations and are increasingly integrated into development pipelines. Here, we provide an overview of AI methods relevant for antibody development, including databases, computational predictors of antibody properties and structure, and computational antibody design methods with an emphasis on machine learning (ML) models, and the design of complementarity-determining region (CDR) loops, antibody structural components critical for binding.
由于其高靶向特异性和结合亲和力,治疗性抗体目前是最大的一类生物疗法。传统的抗体开发过程在成熟和稳健的同时,也很繁琐,并具有显著的局限性。最近在计算和人工智能 (AI) 技术方面取得了重大进展,现在开始克服许多这些局限性,并越来越多地整合到开发管道中。在这里,我们提供了与抗体开发相关的 AI 方法概述,包括数据库、抗体特性和结构的计算预测因子,以及计算抗体设计方法,重点是机器学习 (ML) 模型,以及互补决定区 (CDR) 环的设计,这些都是抗体结合的关键结构组件。