Oberemok Vol V, Puzanova Yelizaveta V, Gal'chinsky Nikita V
Department of General Biology and Genetics, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol, Republic of Crimea.
Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens-National Scientific Centre of the Russian Academy of Sciences, Yalta, Republic of Crimea.
Front Insect Sci. 2024 Dec 11;4:1467221. doi: 10.3389/finsc.2024.1467221. eCollection 2024.
Twenty years ago, it was difficult to imagine the use of nucleic acids in plant protection as insecticides, but today it is a reality. New technologies often work inefficiently and are very expensive; however, qualitative changes occur during their development, making them more accessible and work effectively. Invented in 2008, contact oligonucleotide insecticides (olinscides, or DNA insecticides) based on the CUAD (contact unmodified antisense DNA) platform have been substantially improved and rethought. The main paradigm shift was demonstrating that unmodified antisense DNA can act as a contact insecticide. Key breakthroughs included identifying convenient target genes (rRNA genes), mechanism of action (DNA containment), and discovering insect pests (sternorrhynchans) with high susceptibility to olinscides. Today, the CUAD platform possesses impressive characteristics: low carbon footprint, high safety for non-target organisms, rapid biodegradability, and avoidance of target-site resistance. This next-generation class of insecticides creates opportunities for developing products tailored for specific insect pest populations. The 'genetic zipper' method, based on CUAD biotechnology, integrates molecular genetics, bioinformatics, and nucleic acid synthesis. It serves as a simple and flexible tool for DNA-programmable plant protection using unmodified antisense oligonucleotides targeting pest rRNAs. Aphids, key pests of important agricultural crops, can be effectively controlled by oligonucleotide insecticides at an affordable price, ensuring efficient control with minimal environmental risks. In this article, a low-dose concentration (0.1 ng/µL; 20 mg per hectare in 200 L of water) of the 11 nt long oligonucleotide insecticide Schip-11 shows effectiveness against the aphid , causing mortality rate of 76.06 ± 7.68 on the 12 day (p<0.05). At a consumption rate of 200 L per hectare, the cost of the required oligonucleotide insecticide is about 0.5 USD/ha using liquid-phase DNA synthesis making them competitive in the market and very affordable for lab investigations. We also show that non-canonical base pairing G: U is well tolerated in aphids. Thus, non-canonical base-pairing should be considered not to harm non-target organisms and can be easily solved during the design of oligonucleotide insecticides. The 'genetic zipper' method, based on CUAD biotechnology, helps quickly create a plethora of efficient oligonucleotide pesticides against aphids and other pests. Already today, according to our estimations, the 'genetic zipper' is potentially capable of effectively controlling 10-15% of all insect pests using a simple and flexible algorithm.
二十年前,很难想象将核酸用作植物保护中的杀虫剂,但如今这已成为现实。新技术往往效率低下且成本高昂;然而,在其发展过程中会发生质的变化,使其更易获取且能有效发挥作用。基于CUAD(接触未修饰反义DNA)平台的接触型寡核苷酸杀虫剂(olinscides,或DNA杀虫剂)于2008年发明,现已得到大幅改进并重新思考。主要的范式转变在于证明未修饰的反义DNA可作为接触型杀虫剂。关键突破包括确定方便的靶基因(rRNA基因)、作用机制(DNA抑制)以及发现对olinscides高度敏感的害虫(粉虱类)。如今,CUAD平台具有令人瞩目的特性:低碳足迹、对非靶标生物高度安全、快速生物降解性以及避免靶标位点抗性。这类新一代杀虫剂为开发针对特定害虫种群的产品创造了机会。基于CUAD生物技术的“基因拉链”方法整合了分子遗传学、生物信息学和核酸合成。它是一种简单灵活的工具,用于利用靶向害虫rRNA的未修饰反义寡核苷酸进行DNA可编程植物保护。蚜虫是重要农作物的关键害虫,寡核苷酸杀虫剂能够以可承受的价格有效控制蚜虫,确保以最小的环境风险实现高效防治。在本文中,11个核苷酸长的寡核苷酸杀虫剂Schip - 11的低剂量浓度(0.1 ng/µL;每公顷20毫克,溶于200升水中)对蚜虫显示出有效性,在第12天导致死亡率为76.06 ± 7.68(p<0.05)。以每公顷200升的用量计算,使用液相DNA合成所需的寡核苷酸杀虫剂成本约为0.5美元/公顷,这使其在市场上具有竞争力,并且对于实验室研究来说非常实惠。我们还表明,非规范碱基对G:U在蚜虫中具有良好的耐受性。因此,在设计寡核苷酸杀虫剂时应考虑非规范碱基对不会对非靶标生物造成伤害且易于解决。基于CUAD生物技术的“基因拉链”方法有助于快速创建大量针对蚜虫和其他害虫的高效寡核苷酸农药。据我们估计,如今“基因拉链”已潜在地能够使用简单灵活的算法有效控制10 - 15%的所有害虫。