Suppr超能文献

基于概率运动基元的机器人任务约束优化与自适应

Robot Task-Constrained Optimization and Adaptation with Probabilistic Movement Primitives.

作者信息

Ding Guanwen, Zang Xizhe, Zhang Xuehe, Li Changle, Zhu Yanhe, Zhao Jie

机构信息

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Biomimetics (Basel). 2024 Dec 3;9(12):738. doi: 10.3390/biomimetics9120738.

Abstract

Enabling a robot to learn skills from a human and adapt to different task scenarios will enable the use of robots in manufacturing to improve efficiency. Movement Primitives (MPs) are prominent tools for encoding skills. This paper investigates how to learn MPs from a small number of human demonstrations and adapt to different task constraints, including waypoints, joint limits, virtual walls, and obstacles. Probabilistic Movement Primitives (ProMPs) model movements with distributions, thus providing the robot with additional freedom for task execution. We provide the robot with three modes to move, with only one human demonstration required for each mode. We propose an improved via-point generalization method to generalize smooth trajectories with encoded ProMPs. In addition, we present an effective task-constrained optimization method that incorporates all task constraints analytically into a probabilistic framework. We separate ProMPs as Gaussians at each timestep and minimize Kullback-Leibler (KL) divergence, with a gradient ascent-descent algorithm performed to obtain optimized ProMPs. Given optimized ProMPs, we outline a unified robot movement adaptation method for extending from a single obstacle to multiple obstacles. We validated our approach with a 7-DOF Xarm robot using a series of movement adaptation experiments.

摘要

使机器人能够从人类那里学习技能并适应不同的任务场景,将有助于在制造业中使用机器人来提高效率。运动原语(MPs)是编码技能的重要工具。本文研究了如何从少量人类示范中学习运动原语,并适应不同的任务约束,包括路径点、关节极限、虚拟墙和障碍物。概率运动原语(ProMPs)用分布对运动进行建模,从而为机器人执行任务提供了额外的自由度。我们为机器人提供三种移动模式,每种模式只需要一次人类示范。我们提出了一种改进的路径点泛化方法,用编码的ProMPs来泛化平滑轨迹。此外,我们提出了一种有效的任务约束优化方法,将所有任务约束解析地纳入概率框架。我们在每个时间步将ProMPs分离为高斯分布,并最小化库尔贝克-莱布勒(KL)散度,通过梯度上升-下降算法来获得优化的ProMPs。给定优化的ProMPs,我们概述了一种统一的机器人运动适应方法,用于从单个障碍物扩展到多个障碍物。我们使用一系列运动适应实验,在一个7自由度的Xarm机器人上验证了我们的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d4f/11673859/641d942e726c/biomimetics-09-00738-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验