Han Yibo, Hu Pei, Su Zihan, Liu Lu, Panneerselvam John
School of Computer and Software, Nanyang Institute of Technology, Nanyang 473004, China.
Department of Mathematics & Statistics, Hong Kong Baptist University, Hong Kong 519087, China.
Biomimetics (Basel). 2024 Dec 14;9(12):760. doi: 10.3390/biomimetics9120760.
Image enhancement is an important step in image processing to improve contrast and information quality. Intelligent enhancement algorithms are gaining popularity due to the limitations of traditional methods. This paper utilizes a transformation function to enhance the global and local information of grayscale images, but the parameters of this function can produce significant changes in the processed images. To address this, the whale optimization algorithm (WOA) is employed for parameter optimization. New equations are incorporated into WOA to improve its global optimization capability, and exemplars and advanced spiral updates improve the convergence of the algorithm. Its performance is validated on four different types of images. The algorithm not only outperforms comparison algorithms in the objective function but also excels in other image enhancement metrics, including peak signal-to-noise ratio (PSNR), feature similarity index (FSIM), structural similarity index (SSIM), and patch-based contrast quality index (PCQI). It is superior to the comparison algorithms in 11, 6, 11, 13, and 7 images in these metrics, respectively. The results demonstrate that the algorithm is suitable for image enhancement both subjectively and statistically.
图像增强是图像处理中提高对比度和信息质量的重要步骤。由于传统方法的局限性,智能增强算法越来越受欢迎。本文利用一种变换函数来增强灰度图像的全局和局部信息,但该函数的参数会使处理后的图像产生显著变化。为了解决这个问题,采用鲸鱼优化算法(WOA)进行参数优化。将新的方程纳入WOA以提高其全局优化能力,并且示例和先进的螺旋更新提高了算法的收敛性。在四种不同类型的图像上验证了其性能。该算法不仅在目标函数方面优于比较算法,而且在其他图像增强指标方面也表现出色,包括峰值信噪比(PSNR)、特征相似性指数(FSIM)、结构相似性指数(SSIM)和基于块的对比度质量指数(PCQI)。在这些指标上,该算法分别在11幅、6幅、11幅、13幅和7幅图像中优于比较算法。结果表明,该算法在主观和统计上都适用于图像增强。