Suppr超能文献

一种用于无人机三维路径规划的改进型蛛蜂优化器

An Improved Spider Wasp Optimizer for UAV Three-Dimensional Path Planning.

作者信息

Liang Haijun, Hu Wenhai, Wang Lifei, Gong Ke, Qian Yuxi, Li Longchao

机构信息

Air Traffic Management Institute, Civil Aviation Flight University of China, Deyang 618307, China.

出版信息

Biomimetics (Basel). 2024 Dec 16;9(12):765. doi: 10.3390/biomimetics9120765.

Abstract

This paper proposes an Improved Spider Wasp Optimizer (ISWO) to address inaccuracies in calculating the population (N) during iterations of the SWO algorithm. By innovating the population iteration formula and integrating the advantages of Differential Evolution and the Crayfish Optimization Algorithm, along with introducing an opposition-based learning strategy, ISWO accelerates convergence. The adaptive parameters trade-off probability (TR) and crossover probability (Cr) are dynamically updated to balance the exploration and exploitation phases. In each generation, ISWO optimizes individual positions using Lévy flights, DE's mutation, and crossover operations, and COA's adaptive update mechanisms. The OBL strategy is applied every 10 generations to enhance population diversity. As the iterations progress, the population size gradually decreases, ultimately yielding the optimal solution and recording the convergence process. The algorithm's performance is tested using the 2017 test set, modeling a mountainous environment with a Gaussian function model. Under constraint conditions, the objective function is updated to establish a mathematical model for UAV flight. The minimal cost for obstacle-avoiding flight within the specified airspace is obtained using the fitness function, and the flight path is smoothed through cubic spline interpolation. Overall, ISWO generates high-quality, smooth paths with fewer iterations, overcoming premature convergence and the insufficient local search capabilities of traditional genetic algorithms, adapting to complex terrains, and providing an efficient and reliable solution.

摘要

本文提出了一种改进的蜘蛛黄蜂优化算法(ISWO),以解决蜘蛛黄蜂优化(SWO)算法迭代过程中种群数量(N)计算不准确的问题。通过创新种群迭代公式,融合差分进化和小龙虾优化算法的优点,并引入基于对立学习的策略,ISWO加速了收敛。自适应参数权衡概率(TR)和交叉概率(Cr)被动态更新,以平衡探索和利用阶段。在每一代中,ISWO使用莱维飞行、差分进化的变异和交叉操作以及小龙虾优化算法的自适应更新机制来优化个体位置。每隔10代应用一次基于对立学习的策略以增强种群多样性。随着迭代的进行,种群规模逐渐减小,最终得到最优解并记录收敛过程。使用2017测试集对该算法的性能进行测试,用高斯函数模型对山区环境进行建模。在约束条件下,更新目标函数以建立无人机飞行的数学模型。使用适应度函数获得在指定空域内避障飞行的最小成本,并通过三次样条插值对飞行路径进行平滑处理。总体而言,ISWO以较少的迭代次数生成高质量、平滑的路径,克服了传统遗传算法的早熟收敛和局部搜索能力不足的问题,适应复杂地形,并提供了一种高效可靠的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f65/11673209/3effca362958/biomimetics-09-00765-g011.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验