Xu Fangjun, Che Zhaoxuan, Qiao Jiakun, Han Pingping, Miao Na, Dai Xiangyu, Fu Yuhua, Li Xinyun, Zhu Mengjin
Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
Curr Issues Mol Biol. 2024 Dec 3;46(12):13713-13724. doi: 10.3390/cimb46120819.
The development of multi-omics has increased the likelihood of further improving genomic prediction (GP) of complex traits. Gene expression data can directly reflect the genotype effect, and thus, they are widely used for GP. Generally, the gene expression data are integrated into multiple random effect models as independent data layers or used to replace genotype data for genomic prediction. In this study, we integrated pedigree, genotype, and gene expression data into the single-step method and investigated the effects of this integration on prediction accuracy. The integrated single-step method improved the genomic prediction accuracy of more than 90% of the 54 traits in the Duroc × Erhualian F pig population dataset. On average, the prediction accuracy of the single-step method integrating gene expression data was 20.6% and 11.8% higher than that of the pedigree-based best linear unbiased prediction (ABLUP) and genome-based best linear unbiased prediction (GBLUP) when the weighting factor () was set as 0, and it was 5.3% higher than that of the single-step best linear unbiased prediction (ssBLUP) under different values. Overall, the analyses confirmed that the integration of gene expression data into a single-step method could effectively improve genomic prediction accuracy. Our findings enrich the application of multi-omics data to genomic prediction and provide a valuable reference for integrating multi-omics data into the genomic prediction model.
多组学的发展增加了进一步提高复杂性状基因组预测(GP)的可能性。基因表达数据可以直接反映基因型效应,因此,它们被广泛用于基因组预测。一般来说,基因表达数据作为独立的数据层被整合到多个随机效应模型中,或者用于替代基因型数据进行基因组预测。在本研究中,我们将系谱、基因型和基因表达数据整合到单步方法中,并研究了这种整合对预测准确性的影响。在杜洛克×二花脸F猪群体数据集中,整合后的单步方法提高了54个性状中90%以上性状的基因组预测准确性。当加权因子()设置为0时,整合基因表达数据的单步方法的预测准确性平均比基于系谱的最佳线性无偏预测(ABLUP)和基于基因组的最佳线性无偏预测(GBLUP)分别高20.6%和11.8%,并且在不同值下比单步最佳线性无偏预测(ssBLUP)高5.3%。总体而言,分析证实将基因表达数据整合到单步方法中可以有效提高基因组预测准确性。我们的研究结果丰富了多组学数据在基因组预测中的应用,并为将多组学数据整合到基因组预测模型中提供了有价值的参考。