Fais Giacomo, Sidorowicz Agnieszka, Perra Giovanni, Dessì Debora, Loy Francesco, Lai Nicola, Follesa Paolo, Orrù Roberto, Cao Giacomo, Concas Alessandro
Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.
Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy.
Mar Drugs. 2024 Dec 4;22(12):549. doi: 10.3390/md22120549.
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function. However, it is more likely the organic content, rather than size, influenced anticancer activity, as commercial Ag NPs, despite smaller crystallite sizes, exhibit less effective activity. ZnO NPs P showed increased reactive oxygen species (ROS) generation, correlated with higher cytotoxicity, while ZnO NPs A produced lower ROS levels, resulting in diminished cytotoxic effects. A comparative analysis revealed significant differences in LD values and toxicity profiles. Differentiated PC12 cells showed higher resistance to ZnO, while AgNPs and Ag/AgO-based materials had similar effects on both cell types. This study emphasizes the crucial role of the synthesis environment and bioactive compounds from in modulating nanoparticle surface chemistry, ROS generation, and cytotoxicity. The results provide valuable insights for designing safer and more effective nanomaterials for biomedical applications, especially for targeting tumor-like cells, by exploring the relationships between nanoparticle size, polarity, capping agents, and nanocomposite structures.
使用[植物名称]的极性和非极性提取物绿色合成银(Ag)和氧化锌(ZnO)纳米颗粒(NPs)以及Ag/AgO/ZnO纳米复合材料(NCs),为生产具有可调性能的纳米材料提供了一种可持续的方法。通过检测活性物种的产生及其对线粒体生物能量功能的影响,评估了合成环境和纳米材料特性对细胞毒性的影响。对源自大鼠嗜铬细胞瘤(一种肾上腺髓质肿瘤)的PC12细胞系进行的细胞毒性试验表明,用非极性提取物(Ag/AgO NPs A)和极性提取物(Ag/AgO NPs P)合成的Ag/AgO NPs表现出显著的细胞毒性作用,主要由Ag离子释放和线粒体功能破坏驱动。然而,更有可能是有机成分而非尺寸影响了抗癌活性,因为商业Ag NPs尽管微晶尺寸较小,但其活性效果较差。ZnO NPs P显示出活性氧(ROS)生成增加,这与更高的细胞毒性相关,而ZnO NPs A产生的ROS水平较低,导致细胞毒性作用减弱。比较分析揭示了LD值和毒性谱的显著差异。分化的PC12细胞对ZnO表现出更高的抗性,而AgNPs和基于Ag/AgO的材料对两种细胞类型具有相似的影响。本研究强调了合成环境和[植物名称]中的生物活性化合物在调节纳米颗粒表面化学、ROS生成和细胞毒性方面的关键作用。通过探索纳米颗粒尺寸、极性、封端剂和纳米复合材料结构之间的关系,这些结果为设计用于生物医学应用的更安全、更有效的纳米材料提供了有价值的见解,特别是用于靶向肿瘤样细胞。