Suppr超能文献

SAHIS-Net:一种用于微观高光谱胆管癌图像分割的光谱注意力和特征增强网络。

SAHIS-Net: a spectral attention and feature enhancement network for microscopic hyperspectral cholangiocarcinoma image segmentation.

作者信息

Zhang Yunchu, Dong Jianfei

机构信息

School of Future Science and Engineering, Soochow University, Suzhou 215222, Jiangsu, China.

School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, Jiangsu, China.

出版信息

Biomed Opt Express. 2024 Apr 18;15(5):3147-3162. doi: 10.1364/BOE.519090. eCollection 2024 May 1.

Abstract

Cholangiocarcinoma (CCA) poses a significant clinical challenge due to its aggressive nature and poor prognosis. While traditional diagnosis relies on color-based histopathology, hyperspectral imaging (HSI) offers rich, high-dimensional data holding potential for more accurate diagnosis. However, extracting meaningful insights from this data remains challenging. This work investigates the application of deep learning for CCA segmentation in microscopic HSI images, and introduces two novel neural networks: (1) Histogram Matching U-Net (HM-UNet) for efficient image pre-processing, and (2) Spectral Attention based Hyperspectral Image Segmentation Net (SAHIS-Net) for CCA segmentation. SAHIS-Net integrates a novel Spectral Attention (SA) module for adaptively weighing spectral information, an improved attention-aware feature enhancement (AFE) mechanism for better providing the model with more discriminative features, and a multi-loss training strategy for effective early stage feature extraction. We compare SAHIS-Net against several general and CCA-specific models, demonstrating its superior performance in segmenting CCA regions. These results highlight the potential of our approach for segmenting medical HSI images.

摘要

胆管癌(CCA)因其侵袭性和预后不良而构成重大临床挑战。传统诊断依赖基于颜色的组织病理学,而高光谱成像(HSI)提供了丰富的高维数据,具有实现更准确诊断的潜力。然而,从这些数据中提取有意义的见解仍然具有挑战性。这项工作研究了深度学习在微观HSI图像中进行CCA分割的应用,并引入了两种新型神经网络:(1)用于高效图像预处理的直方图匹配U-Net(HM-UNet),以及(2)用于CCA分割的基于光谱注意力的高光谱图像分割网络(SAHIS-Net)。SAHIS-Net集成了一个用于自适应权衡光谱信息的新型光谱注意力(SA)模块、一种用于更好地为模型提供更具判别力特征的改进的注意力感知特征增强(AFE)机制,以及一种用于有效早期特征提取的多损失训练策略。我们将SAHIS-Net与几种通用和特定于CCA的模型进行比较,证明了其在分割CCA区域方面的卓越性能。这些结果突出了我们的方法在分割医学HSI图像方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5f9/11161366/7e373781e6e3/boe-15-5-3147-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验