Suppr超能文献

使用基于简化的数据非依赖采集的蛋白质组学工作流程对小胶质细胞进行深度蛋白质组覆盖:针对表型多样的细胞类型的方法考量

Deep Proteome Coverage of Microglia Using a Streamlined Data-Independent Acquisition-Based Proteomic Workflow: Method Consideration for a Phenotypically Diverse Cell Type.

作者信息

Wohlfahrt Jessica, Guergues Jennifer, Stevens Stanley M

机构信息

Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.

出版信息

Proteomes. 2024 Nov 27;12(4):35. doi: 10.3390/proteomes12040035.

Abstract

As the primary innate immune cells of the brain, microglia play a key role in various homeostatic and disease-related processes. To carry out their numerous functions, microglia adopt a wide range of phenotypic states. The proteomic landscape represents a more accurate molecular representation of these phenotypes; however, microglia present unique challenges for proteomic analysis. This study implemented a streamlined liquid- and gas-phase fractionation method with data-dependent acquisition (DDA) and parallel accumulation-serial fragmentation (PASEF) analysis on a TIMS-TOF instrument to compile a comprehensive protein library obtained from adult-derived, immortalized mouse microglia with low starting material (10 µg). The empirical library consisted of 9140 microglial proteins and was utilized to identify an average of 7264 proteins/run from single-shot, data-independent acquisition (DIA)-based analysis microglial cell lysate digest (200 ng). Additionally, a predicted library facilitated the identification of 7519 average proteins/run from the same DIA data, revealing complementary coverage compared with the empirical library and collectively increasing coverage to approximately 8000 proteins. Importantly, several microglia-relevant pathways were uniquely identified with the empirical library approach. Overall, we report a simplified, reproducible approach to address the proteome complexity of microglia using low sample input and show the importance of library optimization for this phenotypically diverse cell type.

摘要

作为大脑主要的先天性免疫细胞,小胶质细胞在各种稳态和疾病相关过程中发挥关键作用。为了执行其众多功能,小胶质细胞呈现出广泛的表型状态。蛋白质组学格局更准确地反映了这些表型的分子特征;然而,小胶质细胞在蛋白质组学分析中存在独特的挑战。本研究采用了一种简化的液相和气相分级分离方法,并在TIMS-TOF仪器上进行数据依赖采集(DDA)和平行累积-序列碎裂(PASEF)分析,以编制一个从成年来源的永生化小鼠小胶质细胞中获得的综合蛋白质文库,起始材料量低(10μg)。经验文库包含9140种小胶质细胞蛋白质,并用于从单次、基于数据非依赖采集(DIA)的分析小胶质细胞裂解物消化物(200ng)中平均每次运行鉴定7264种蛋白质。此外,一个预测文库有助于从相同的DIA数据中平均每次运行鉴定7519种蛋白质,与经验文库相比显示出互补的覆盖范围,并共同将覆盖范围增加到约8000种蛋白质。重要的是,通过经验文库方法独特地鉴定了几种与小胶质细胞相关的途径。总体而言,我们报告了一种简化、可重复的方法,使用低样本输入来解决小胶质细胞的蛋白质组复杂性问题,并展示了文库优化对于这种表型多样的细胞类型的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9f2/11679481/054cfe9fdd89/proteomes-12-00035-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验