Guergues Jennifer, Wohlfahrt Jessica, Koomen John M, Krieger Jonathan R, Varma Sameer, Stevens Stanley M
Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA.
Molecular Oncology and Molecular Medicine, Moffitt Cancer Center, Tampa, Florida, USA.
Proteomics. 2025 Feb;25(3):e2400129. doi: 10.1002/pmic.202400129. Epub 2024 Sep 5.
Targeted proteomics, which includes parallel reaction monitoring (PRM), is typically utilized for more precise detection and quantitation of key proteins and/or pathways derived from complex discovery proteomics datasets. Initial discovery-based analysis using data independent acquisition (DIA) can obtain deep proteome coverage with low data missingness while targeted PRM assays can provide additional benefits in further eliminating missing data and optimizing measurement precision. However, PRM method development from bioinformatic predictions can be tedious and time-consuming because of the DIA output complexity. We address this limitation with a Python script that rapidly generates a PRM method for the TIMS-TOF platform using DIA data and a user-defined target list. To evaluate the script, DIA data obtained from HeLa cell lysate (200 ng, 45-min gradient method) as well as canonical pathway information from Ingenuity Pathway Analysis was utilized to generate a pathway-driven PRM method. Subsequent PRM analysis of targets within the example pathway, regulation of apoptosis, resulted in improved chromatographic data and enhanced quantitation precision (100% peptides below 10% CV with a median CV of 2.9%, n = 3 technical replicates). The script is freely available at https://github.com/StevensOmicsLab/PRM-script and provides a framework that can be adapted to multiple DDA/DIA data outputs and instrument-specific PRM method types.
靶向蛋白质组学,包括平行反应监测(PRM),通常用于更精确地检测和定量源自复杂的发现蛋白质组学数据集的关键蛋白质和/或信号通路。使用数据非依赖采集(DIA)进行基于发现的初始分析可以获得深度蛋白质组覆盖,数据缺失率低,而靶向PRM分析在进一步消除缺失数据和优化测量精度方面可以提供额外的优势。然而,由于DIA输出的复杂性,从生物信息学预测开发PRM方法可能既繁琐又耗时。我们用一个Python脚本解决了这个限制,该脚本使用DIA数据和用户定义的目标列表为TIMS-TOF平台快速生成PRM方法。为了评估该脚本,我们利用从HeLa细胞裂解物中获得的DIA数据(200 ng,45分钟梯度方法)以及来自Ingenuity Pathway Analysis的经典信号通路信息来生成一个由信号通路驱动的PRM方法。随后对示例信号通路(细胞凋亡调控)中的靶点进行PRM分析,得到了改进后的色谱数据和更高的定量精度(100%的肽段CV低于10%,中位CV为2.9%,n = 3次技术重复)。该脚本可在https://github.com/StevensOmicsLab/PRM-script上免费获取,并提供了一个可适用于多种数据依赖采集/数据非依赖采集(DDA/DIA)数据输出和特定仪器PRM方法类型的框架。