Li Bo, Chen Haoyu, Xiang Zhongliang, Sun Mengze, Chen Long, Sun Mingyan
Shandong Technology and Business University, 191 Binhai Middle Road, Yantai, Shandong, China.
Shandong Technology and Business University, 191 Binhai Middle Road, Yantai, Shandong, China.
Comput Biol Med. 2025 Feb;185:109575. doi: 10.1016/j.compbiomed.2024.109575. Epub 2024 Dec 26.
The classification of Doppler ultrasound images plays an important role in the diagnosis of pregnancy. However, it is a challenging problem that suffers from a variable length of these images with a dimension gap between them. In this study, we propose a latent representation weights learning method (LRWL) for pregnancy prediction using Doppler ultrasound images. Unlike most existing methods, LRWL can handle a variable length of multiple images, especially with an irregular multi-image issue. Furthermore, a spatial interaction measurement (SIM) method is proposed to verify the hypothesis that LRWL can more accurately capture relationships among the images. The images, along with diagnostic indices and weights, are integrated as inputs to a deep learning (DL) model for pregnancy prediction. The study conducts comprehensive experiments involving classification tasks on real irregular reproduction datasets and two synthetic regular datasets. Results demonstrate that LRWL surpasses existing methods and is well-suited for irregular multi-image datasets. The proposed method can be effectively implemented using the limited-memory Broyden-Fletcher-Goldfarb-Shanno bound constraint (L-BFGS-B) and the alternating direction minimization (ADM) framework, exhibiting strong performance in terms of accuracy and convergence.
多普勒超声图像的分类在妊娠诊断中起着重要作用。然而,这是一个具有挑战性的问题,因为这些图像长度可变且存在维度差异。在本研究中,我们提出了一种用于使用多普勒超声图像进行妊娠预测的潜在表示权重学习方法(LRWL)。与大多数现有方法不同,LRWL可以处理多个长度可变的图像,特别是存在不规则多图像问题的情况。此外,还提出了一种空间交互测量(SIM)方法,以验证LRWL能够更准确地捕捉图像之间关系的假设。将图像与诊断指标和权重整合在一起,作为深度学习(DL)模型进行妊娠预测的输入。该研究在真实的不规则生殖数据集和两个合成规则数据集上进行了涉及分类任务的全面实验。结果表明,LRWL优于现有方法,非常适合不规则多图像数据集。所提出的方法可以使用有限内存布罗伊登-弗莱彻-戈德法布-肖诺边界约束(L-BFGS-B)和交替方向最小化(ADM)框架有效地实现,在准确性和收敛性方面表现出强大的性能。