Suppr超能文献

eSAH评分:一种用于蛛网膜下腔出血死亡率和预后的简单实用预测模型。

The eSAH score: a simple practical predictive model for SAH mortality and outcomes.

作者信息

Sharma Rohan, Mandl Daniel, Föttinger Fabian, Salman Saif D, Godasi Raja, Wei Yujia, Tawk Rabih G, Freeman W David

机构信息

Neurocritical Care Fellowship, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA.

Paracelsus Medical Private University, Salzburg, Austria.

出版信息

Sci Rep. 2024 Dec 28;14(1):30753. doi: 10.1038/s41598-024-80524-w.

Abstract

We developed a simple quantifiable scoring system that predicts aneurysmal subarachnoid hemorrhage (aSAH) mortality, delayed cerebral ischemia (DCI), and modified Rankin scale (mRS) outcomes using readily available SAH admission data with SAH volume (SAHV) measured on computed tomography (CT). We retrospectively analyzed a cohort of 277 patients with aSAH admitted at our Comprehensive Stroke Center at Mayo Clinic in Jacksonville, Florida, between January 5, 2012, and February 24, 2022. We developed a mathematical radiographic model SAHV that measures basal cisternal SAH blood volume using a derivation of the ABC/2 ellipsoid formula (A = width/thickness, B = length, C = vertical extension) on noncontrast CT, which we previously demonstrated is comparable to pixel-based manual segmentation on noncontrast CT. Data were analyzed using t test, χ test, receiver operator characteristics curve, and area under the curve (AUC) analysis. Multivariate logistic regression analysis with stepwise elimination of variables not contributing to the model (0.05 significance level for entry into the model) was used to develop an enhanced SAH (eSAH) scoring system. Using multivariate logistic regression, we found that age, Glasgow Coma Scale score, and SAHV were significantly associated with mRS outcomes at discharge, in-hospital DCI, and in-hospital mortality. Using these factors, we developed a weighted eSAH score, ranging from 0 to 5, that was strongly predictive of mRS outcomes (AUC = 0.89), DCI (AUC = 0.75), and in-hospital mortality (AUC = 0.88). Our proposed eSAH score, a simple quantitative model based on SAHV, Glasgow Coma Scale score, and age, appears to predict mortality and outcomes in patients with aSAH. A larger cohort validation study is planned.

摘要

我们开发了一种简单的可量化评分系统,该系统使用通过计算机断层扫描(CT)测量的蛛网膜下腔出血(SAH)体积(SAHV)这一现成的SAH入院数据,来预测动脉瘤性蛛网膜下腔出血(aSAH)的死亡率、迟发性脑缺血(DCI)以及改良Rankin量表(mRS)评分结果。我们回顾性分析了2012年1月5日至2022年2月24日期间在佛罗里达州杰克逊维尔市梅奥诊所综合卒中中心收治的277例aSAH患者。我们开发了一种数学影像学模型SAHV,该模型使用非增强CT上ABC/2椭球体公式(A =宽度/厚度,B =长度,C =垂直延伸)的推导来测量基底池SAH血量,我们之前证明该模型与非增强CT上基于像素的手动分割方法具有可比性。使用t检验、χ检验、受试者操作特征曲线和曲线下面积(AUC)分析对数据进行分析。采用逐步剔除对模型无贡献变量的多因素逻辑回归分析(进入模型的显著性水平为0.05)来开发增强型SAH(eSAH)评分系统。通过多因素逻辑回归分析,我们发现年龄、格拉斯哥昏迷量表评分和SAHV与出院时的mRS评分结果、住院期间的DCI和住院死亡率显著相关。利用这些因素,我们开发了一个加权eSAH评分,范围从0到5,该评分对mRS评分结果(AUC = 0.89)、DCI(AUC = 0.75)和住院死亡率(AUC = 0.88)具有很强的预测能力。我们提出的eSAH评分是一种基于SAHV、格拉斯哥昏迷量表评分和年龄的简单定量模型,似乎可以预测aSAH患者的死亡率和预后。计划开展一项更大规模的队列验证研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad10/11681261/4656fb412f80/41598_2024_80524_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验