Suppr超能文献

使用混合深度卷积神经网络和双向长短期记忆模型与可穿戴传感器增强医疗紧急情况下的人类活动识别。

Enhanced human activity recognition in medical emergencies using a hybrid deep CNN and bi-directional LSTM model with wearable sensors.

作者信息

Chandramouli Nishanth Adithya, Natarajan Sivaramakrishnan, Alharbi Amal H, Kannan Subhash, Khafaga Doaa Sami, Raju Sekar Kidambi, Eid Marwa M, El-Kenawy El-Sayed M

机构信息

School of Mechanical Engineering, SASTRA Deemed University, Alumni, 613401, Thanjavur, India.

School of Computer Science Engineering, Vellore Institute of Technology, Chennai, 600127, India.

出版信息

Sci Rep. 2024 Dec 28;14(1):30979. doi: 10.1038/s41598-024-82045-y.

Abstract

Human activity recognition (HAR) is one of the most important segments of technology advancement in applications of smart devices, healthcare systems & fitness. HAR uses details from wearable sensors that capture the way human beings move or engage with their surrounding. Several researchers have thus presented different ways of modeling human motion, and some have been as follows: Many researchers have presented different methods of modeling human movements. Therefore, in this paper, we proposed the CNN BiLSTM model with undersampling to improve the recognition of human actions. The model is evaluated using state-of-the-art metrics, including accuracy, precision, recall, and F1-score, on two publicly available datasets: For instance, the MHEALTH and Actitracker. This will enable the team to attain test accuracies of up to 98.5% on the MHEALTH dataset. The proposed CNN-BiLSTM model outperforms the conventional deep learning methods, as reported in the Actitracker dataset, by about 5% improvement. HAR has many applications, one of which is used to keep vigil over elderly people who live alone to alert when one has fallen or when any strange movement is noticed which could be a sign that the individual is experiencing a medical Emergency. It can also be applied in physiotherapy, where the patient's development throughout rehabilitation exercises can be accessed.

摘要

人类活动识别(HAR)是智能设备、医疗保健系统及健身应用中技术进步的最重要领域之一。HAR利用可穿戴传感器获取的细节,这些细节捕捉了人类的运动方式或与周围环境的互动方式。因此,几位研究人员提出了不同的人类运动建模方法,其中一些如下:许多研究人员提出了不同的人类运动建模方法。因此,在本文中,我们提出了带欠采样的CNN BiLSTM模型,以提高对人类行为的识别。该模型在两个公开可用的数据集上使用包括准确率、精确率、召回率和F1分数在内的最先进指标进行评估:例如,MHEALTH和Actitracker。这将使该团队在MHEALTH数据集上获得高达98.5%的测试准确率。如在Actitracker数据集中所报告的,所提出的CNN-BiLSTM模型比传统深度学习方法的性能高出约5%。HAR有许多应用,其中之一是用于对独居老年人进行监测,以便在有人摔倒或注意到任何奇怪动作(这可能表明该人正在经历医疗紧急情况)时发出警报。它还可以应用于物理治疗,在那里可以了解患者在整个康复训练过程中的进展情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eca/11680769/15133b028367/41598_2024_82045_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验