文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用70万人工日的可穿戴数据进行人类活动识别的自监督学习。

Self-supervised learning for human activity recognition using 700,000 person-days of wearable data.

作者信息

Yuan Hang, Chan Shing, Creagh Andrew P, Tong Catherine, Acquah Aidan, Clifton David A, Doherty Aiden

机构信息

Nuffield Department of Population Health, University of Oxford, Oxford, UK.

Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.

出版信息

NPJ Digit Med. 2024 Apr 12;7(1):91. doi: 10.1038/s41746-024-01062-3.


DOI:10.1038/s41746-024-01062-3
PMID:38609437
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11015005/
Abstract

Accurate physical activity monitoring is essential to understand the impact of physical activity on one's physical health and overall well-being. However, advances in human activity recognition algorithms have been constrained by the limited availability of large labelled datasets. This study aims to leverage recent advances in self-supervised learning to exploit the large-scale UK Biobank accelerometer dataset-a 700,000 person-days unlabelled dataset-in order to build models with vastly improved generalisability and accuracy. Our resulting models consistently outperform strong baselines across eight benchmark datasets, with an F1 relative improvement of 2.5-130.9% (median 24.4%). More importantly, in contrast to previous reports, our results generalise across external datasets, cohorts, living environments, and sensor devices. Our open-sourced pre-trained models will be valuable in domains with limited labelled data or where good sampling coverage (across devices, populations, and activities) is hard to achieve.

摘要

准确监测身体活动对于理解身体活动对一个人的身体健康和整体幸福感的影响至关重要。然而,人类活动识别算法的进展一直受到大型标注数据集有限可用性的限制。本研究旨在利用自监督学习的最新进展,利用大规模的英国生物银行加速度计数据集——一个70万人日的未标注数据集——来构建具有大大提高的泛化能力和准确性的模型。我们得到的模型在八个基准数据集上始终优于强大的基线,F1相对提高了2.5 - 130.9%(中位数为24.4%)。更重要的是,与之前的报告不同,我们的结果在外部数据集、队列、生活环境和传感器设备中都具有泛化性。我们开源的预训练模型将在标注数据有限或难以实现良好采样覆盖(跨设备、人群和活动)的领域中具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4367/11015005/552565d8063a/41746_2024_1062_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4367/11015005/20cfcec75652/41746_2024_1062_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4367/11015005/c04861e3a8d7/41746_2024_1062_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4367/11015005/36b9dd62cc57/41746_2024_1062_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4367/11015005/552565d8063a/41746_2024_1062_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4367/11015005/20cfcec75652/41746_2024_1062_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4367/11015005/c04861e3a8d7/41746_2024_1062_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4367/11015005/36b9dd62cc57/41746_2024_1062_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4367/11015005/552565d8063a/41746_2024_1062_Fig4_HTML.jpg

相似文献

[1]
Self-supervised learning for human activity recognition using 700,000 person-days of wearable data.

NPJ Digit Med. 2024-4-12

[2]
Ensemble machine learning model trained on a new synthesized dataset generalizes well for stress prediction using wearable devices.

J Biomed Inform. 2023-12

[3]
Dealing with distribution mismatch in semi-supervised deep learning for COVID-19 detection using chest X-ray images: A novel approach using feature densities.

Appl Soft Comput. 2022-7

[4]
Self-Supervised Machine Learning to Characterize Step Counts from Wrist-Worn Accelerometers in the UK Biobank.

Med Sci Sports Exerc. 2024-10-1

[5]
A real use case of semi-supervised learning for mammogram classification in a local clinic of Costa Rica.

Med Biol Eng Comput. 2022-4

[6]
Detecting floating litter in freshwater bodies with semi-supervised deep learning.

Water Res. 2024-11-15

[7]
A Large-Scale Open Motion Dataset (KFall) and Benchmark Algorithms for Detecting Pre-impact Fall of the Elderly Using Wearable Inertial Sensors.

Front Aging Neurosci. 2021-7-16

[8]
Deep neural networks for wearable sensor-based activity recognition in Parkinson's disease: investigating generalizability and model complexity.

Biomed Eng Online. 2024-2-9

[9]
A Study of Accelerometer and Gyroscope Measurements in Physical Life-Log Activities Detection Systems.

Sensors (Basel). 2020-11-21

[10]
Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.

JMIR Mhealth Uhealth. 2019-2-7

引用本文的文献

[1]
Intelligent routing for human activity recognition in wireless body area networks.

Sci Rep. 2025-7-29

[2]
Transforming label-efficient decoding of healthcare wearables with self-supervised learning and "embedded" medical domain expertise.

Commun Eng. 2025-7-26

[3]
Reducing Label Dependency in Human Activity Recognition with Wearables: From Supervised Learning to Novel Weakly Self-Supervised Approaches.

Sensors (Basel). 2025-6-28

[4]
Utility of synthetic musculoskeletal gaits for generalizable healthcare applications.

Nat Commun. 2025-7-4

[5]
On convex decision regions in deep network representations.

Nat Commun. 2025-7-2

[6]
Continuous Assessment of Daily-Living Gait Using Self-Supervised Learning of Wrist-Worn Accelerometer Data.

medRxiv. 2025-5-21

[7]
Validation of an Open-Source Smartwatch for Continuous Monitoring of Physical Activity and Heart Rate in Adults.

Sensors (Basel). 2025-5-6

[8]
Assessment of physical activity patterns in patients with rheumatoid arthritis using the UK Biobank.

PLoS One. 2025-3-26

[9]
The optimization and impact of public sports service quality based on the supervised learning model and artificial intelligence.

Sci Rep. 2025-3-22

[10]
Deep-Learning-Based Analysis of Electronic Skin Sensing Data.

Sensors (Basel). 2025-3-6

本文引用的文献

[1]
Self-supervised learning of accelerometer data provides new insights for sleep and its association with mortality.

NPJ Digit Med. 2024-5-20

[2]
Digital health technologies and machine learning augment patient reported outcomes to remotely characterise rheumatoid arthritis.

NPJ Digit Med. 2024-2-12

[3]
Detection of Atrial Fibrillation in a Large Population Using Wearable Devices: The Fitbit Heart Study.

Circulation. 2022-11-8

[4]
Wearable accelerometer-derived physical activity and incident disease.

NPJ Digit Med. 2022-9-2

[5]
Wearable technology for early detection of COVID-19: A systematic scoping review.

Prev Med. 2022-9

[6]
Wearable Sensors for COVID-19: A Call to Action to Harness Our Digital Infrastructure for Remote Patient Monitoring and Virtual Assessments.

Front Digit Health. 2020-6-23

[7]
A systematic review of smartphone-based human activity recognition methods for health research.

NPJ Digit Med. 2021-10-18

[8]
Interpretable deep learning for the remote characterisation of ambulation in multiple sclerosis using smartphones.

Sci Rep. 2021-7-12

[9]
Accelerometer data collected with a minimum set of wearable sensors from subjects with Parkinson's disease.

Sci Data. 2021-2-5

[10]
The Use of Wearables in Clinical Trials During Cancer Treatment: Systematic Review.

JMIR Mhealth Uhealth. 2020-11-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索