Yuan Hang, Chan Shing, Creagh Andrew P, Tong Catherine, Acquah Aidan, Clifton David A, Doherty Aiden
Nuffield Department of Population Health, University of Oxford, Oxford, UK.
Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK.
NPJ Digit Med. 2024 Apr 12;7(1):91. doi: 10.1038/s41746-024-01062-3.
Accurate physical activity monitoring is essential to understand the impact of physical activity on one's physical health and overall well-being. However, advances in human activity recognition algorithms have been constrained by the limited availability of large labelled datasets. This study aims to leverage recent advances in self-supervised learning to exploit the large-scale UK Biobank accelerometer dataset-a 700,000 person-days unlabelled dataset-in order to build models with vastly improved generalisability and accuracy. Our resulting models consistently outperform strong baselines across eight benchmark datasets, with an F1 relative improvement of 2.5-130.9% (median 24.4%). More importantly, in contrast to previous reports, our results generalise across external datasets, cohorts, living environments, and sensor devices. Our open-sourced pre-trained models will be valuable in domains with limited labelled data or where good sampling coverage (across devices, populations, and activities) is hard to achieve.
准确监测身体活动对于理解身体活动对一个人的身体健康和整体幸福感的影响至关重要。然而,人类活动识别算法的进展一直受到大型标注数据集有限可用性的限制。本研究旨在利用自监督学习的最新进展,利用大规模的英国生物银行加速度计数据集——一个70万人日的未标注数据集——来构建具有大大提高的泛化能力和准确性的模型。我们得到的模型在八个基准数据集上始终优于强大的基线,F1相对提高了2.5 - 130.9%(中位数为24.4%)。更重要的是,与之前的报告不同,我们的结果在外部数据集、队列、生活环境和传感器设备中都具有泛化性。我们开源的预训练模型将在标注数据有限或难以实现良好采样覆盖(跨设备、人群和活动)的领域中具有重要价值。
Med Sci Sports Exerc. 2024-10-1
Med Biol Eng Comput. 2022-4
Water Res. 2024-11-15
Sensors (Basel). 2020-11-21
JMIR Mhealth Uhealth. 2019-2-7
Nat Commun. 2025-7-2
Sensors (Basel). 2025-3-6
NPJ Digit Med. 2022-9-2
NPJ Digit Med. 2021-10-18
JMIR Mhealth Uhealth. 2020-11-11