Wang Pengyuan, Wen Zhengying
Zhengzhou University of Light Industry, Zhengzhou, 450000, China.
Henan University of Engineering, Zhengzhou, 451191, China.
Sci Rep. 2024 Dec 28;14(1):31155. doi: 10.1038/s41598-024-82433-4.
Social media generates vast amounts of spatio-temporal sequential data. However, current methods often ignore the complex spatio-temporal correlations within these data. This oversight makes it difficult to fully capture the dynamic features of the data. To delve deeply into the concealed feature attributes within timely spatio-temporal sequence data from social media, this study introduces a Spatio-Temporal Graph Wavelet Neural Network (ST-GWNN). This model captures spatio-temporal correlations across time and space by combining spatial graphs from multiple time intervals. On this basis, we have developed a spatial feature extraction layer using the Graph Wavelet Neural Network (GWNN). This layer learns localized representations of node features to identify spatial dependencies. In GWNN, graph wavelet transformation reduces computational complexity and improves operational efficiency compared to Spectral CNN. Furthermore, the sparse representation of node features is enhanced via localized learning, thereby improving network performance. The effectiveness of the model is verified using four distinct social media datasets. Experimental results underscore the notable advantages of the proposed model in the realm of timely time-series data association mining, showcasing its capacity to better capture spatio-temporal dynamics and uncover the underlying association mining within the data. In comparison to alternative models, the approach outlined in this paper exhibits substantial improvements in terms of accuracy and efficiency, affirming the efficacy and innovation of the model.
社交媒体产生了大量的时空序列数据。然而,当前的方法往往忽略了这些数据中复杂的时空相关性。这种疏忽使得难以充分捕捉数据的动态特征。为了深入研究社交媒体及时时空序列数据中隐藏的特征属性,本研究引入了一种时空图小波神经网络(ST-GWNN)。该模型通过组合多个时间间隔的空间图来捕捉跨时间和空间的时空相关性。在此基础上,我们使用图小波神经网络(GWNN)开发了一个空间特征提取层。该层学习节点特征的局部表示以识别空间依赖性。在GWNN中,与谱卷积神经网络相比,图小波变换降低了计算复杂度并提高了运算效率。此外,通过局部学习增强了节点特征的稀疏表示,从而提高了网络性能。使用四个不同的社交媒体数据集验证了该模型的有效性。实验结果强调了所提出模型在及时时间序列数据关联挖掘领域的显著优势,展示了其更好地捕捉时空动态以及揭示数据中潜在关联挖掘的能力。与替代模型相比,本文概述的方法在准确性和效率方面表现出显著改进,证实了该模型的有效性和创新性。