Suppr超能文献

利用长寿命阳离子中间体捕获动态配体到金属的电荷转移以实现阴离子氧化还原。

Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox.

作者信息

Li Biao, Kumar Khagesh, Roy Indrani, Morozov Anatolii V, Emelyanova Olga V, Zhang Leiting, Koç Tuncay, Belin Stéphanie, Cabana Jordi, Dedryvère Rémi, Abakumov Artem M, Tarascon Jean-Marie

机构信息

Chimie du Solide-Energie, UMR 8260, Collège de France, Paris, France.

Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS, Amiens, France.

出版信息

Nat Mater. 2022 Oct;21(10):1165-1174. doi: 10.1038/s41563-022-01278-2. Epub 2022 Jun 20.

Abstract

Reversible anionic redox reactions represent a transformational change for creating advanced high-energy-density positive-electrode materials for lithium-ion batteries. The activation mechanism of these reactions is frequently linked to ligand-to-metal charge transfer (LMCT) processes, which have not been fully validated experimentally due to the lack of suitable model materials. Here we show that the activation of anionic redox in cation-disordered rock-salt LiTiNiO involves a long-lived intermediate Ni species, which can fully evolve to Ni during relaxation. Combining electrochemical analysis and spectroscopic techniques, we quantitatively identified that the reduction of this Ni species goes through a dynamic LMCT process (Ni-O → Ni-O). Our findings provide experimental validation of previous theoretical hypotheses and help to rationalize several peculiarities associated with anionic redox, such as cationic-anionic redox inversion and voltage hysteresis. This work also provides additional guidance for designing high-capacity electrodes by screening appropriate cationic species for mediating LMCT.

摘要

可逆阴离子氧化还原反应代表了一种变革性变化,用于为锂离子电池创造先进的高能量密度正极材料。这些反应的激活机制通常与配体到金属的电荷转移(LMCT)过程相关,由于缺乏合适的模型材料,这些过程尚未通过实验得到充分验证。在这里,我们表明阳离子无序岩盐LiTiNiO中阴离子氧化还原的激活涉及一种长寿命的中间镍物种,该物种在弛豫过程中可以完全演化为镍。结合电化学分析和光谱技术,我们定量地确定了这种镍物种的还原经历了一个动态的LMCT过程(Ni-O → Ni-O)。我们的发现为先前的理论假设提供了实验验证,并有助于解释与阴离子氧化还原相关的几个特性,如阳离子-阴离子氧化还原反转和电压滞后。这项工作还通过筛选合适的阳离子物种来介导LMCT,为设计高容量电极提供了额外的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验