Suppr超能文献

乳腺癌中缺氧诱导形态学变化的计算病理学检测

Computational Pathology Detection of Hypoxia-Induced Morphologic Changes in Breast Cancer.

作者信息

Manescu Petru, Geradts Joseph, Fernandez-Reyes Delmiro

机构信息

Department of Computer Science, Faculty of Engineering Sciences, University College London, London, United Kingdom.

Department of Pathology, University of California San Francisco, San Francisco, California.

出版信息

Am J Pathol. 2025 Apr;195(4):663-670. doi: 10.1016/j.ajpath.2024.10.023. Epub 2024 Dec 26.

Abstract

Understanding the tumor hypoxic microenvironment is crucial for grasping tumor biology, clinical progression, and treatment responses. This study presents a novel application of artificial intelligence in computational histopathology to evaluate hypoxia in breast cancer. Weakly supervised deep learning models can accurately detect morphologic changes associated with hypoxia in routine hematoxylin and eosin (H&E)-stained whole slide images (WSIs). The HypOxNet model was trained on H&E-stained WSIs from breast cancer primary sites (n = 1016) at ×40 magnification using data from The Cancer Genome Atlas. Hypoxia Buffa signature was used to measure hypoxia scores, which ranged from -43 to 47, and stratified the samples into hypoxic and normoxic based on these scores. This stratification represented the weak labels associated with each WSI. HypOxNet achieved an average area under the curve of 0.82 on test sets, identifying significant differences in cell morphology between hypoxic and normoxic tissue regions. Importantly, once trained, the HypOxNet model required only the readily available H&E-stained slides, making it especially valuable in low-resource settings where additional gene expression assays are not available. These artificial intelligence-based hypoxia detection models can potentially be extended to other tumor types and seamlessly integrated into pathology workflows, offering a fast, cost-effective alternative to molecular testing.

摘要

了解肿瘤缺氧微环境对于掌握肿瘤生物学、临床进展和治疗反应至关重要。本研究展示了人工智能在计算组织病理学中的一种新应用,用于评估乳腺癌中的缺氧情况。弱监督深度学习模型能够在常规苏木精和伊红(H&E)染色的全切片图像(WSIs)中准确检测与缺氧相关的形态学变化。使用来自癌症基因组图谱的数据,在40倍放大率下对来自乳腺癌原发部位(n = 1016)的H&E染色WSIs训练HypOxNet模型。缺氧Buffa特征用于测量缺氧评分,评分范围为-43至47,并根据这些评分将样本分为缺氧和正常氧合组。这种分层代表了与每个WSI相关的弱标签。HypOxNet在测试集上的曲线下面积平均为0.82,识别出缺氧和正常氧合组织区域之间细胞形态的显著差异。重要的是,一旦训练完成,HypOxNet模型仅需要现成的H&E染色切片,这使其在无法进行额外基因表达检测的低资源环境中特别有价值。这些基于人工智能的缺氧检测模型有可能扩展到其他肿瘤类型,并无缝集成到病理学工作流程中,为分子检测提供一种快速、经济高效的替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6b8/12179535/75f0f837b649/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验