Suppr超能文献

纵向代谢组学数据中的贝叶斯半参数推断

Bayesian semiparametric inference in longitudinal metabolomics data.

作者信息

Sarkar Abhra, Cominetti Ornella, Montoliu Ivan, Hosking Joanne, Pinkney Jonathan, Martin Francois-Pierre, Dunson David B

机构信息

Department of Statistics and Data Sciences, University of Texas at Austin, Austin, 78712-1823, USA.

Nestlé Research, Lausanne, 1015, Switzerland.

出版信息

Sci Rep. 2024 Dec 28;14(1):31336. doi: 10.1038/s41598-024-82718-8.

Abstract

The article is motivated by an application to the EarlyBird cohort study aiming to explore how anthropometrics and clinical and metabolic processes are associated with obesity and glucose control during childhood. There is interest in inferring the relationship between dynamically changing and high-dimensional metabolites and a longitudinal response. Important aspects of the analysis include the selection of the important set of metabolites and the accommodation of missing data in both response and covariate values. With this motivation, we propose a flexible but parsimonious Bayesian semiparametric joint model for the outcome and the covariate generating processes, making novel use of nonparametric mean processes, latent factor models, and different classes of continuous shrinkage priors. The proposed approach efficiently addresses daunting dimensionality challenges, simplifies imputation tasks, and automates the selection of important predictors. Implementation via an efficient Markov chain Monte Carlo algorithm appropriately accounts for uncertainty in various aspects of the analysis. Simulation experiments illustrate the efficacy of the proposed methodology. The application to the EarlyBird cohort study illustrates its practical utility in enabling statistical integration of different molecular processes involved in glucose production and metabolism. From this study, we were able to show that glucose levels from 5 to 16 years of age are associated with different circulating levels of metabolites in the blood serum and can be fitted over time for a wide range of shapes of trajectories. The metabolites contributing the most to explaining glucose trajectories tend to be involved in different central energy metabolomic pathways. The methodology provides a tool to generate new hypotheses related to obesity and glucose control during childhood and adolescence.

摘要

本文受一项应用于EarlyBird队列研究的启发,该研究旨在探索人体测量学、临床和代谢过程如何与儿童期肥胖及血糖控制相关联。人们对推断动态变化的高维代谢物与纵向反应之间的关系很感兴趣。分析的重要方面包括选择重要的代谢物集以及处理反应值和协变量值中的缺失数据。出于这一动机,我们为结果和协变量生成过程提出了一个灵活但简约的贝叶斯半参数联合模型,创新性地使用了非参数均值过程、潜在因子模型和不同类别的连续收缩先验。所提出的方法有效地应对了令人生畏的维度挑战,简化了插补任务,并自动选择重要预测因子。通过高效的马尔可夫链蒙特卡罗算法进行实现,适当地考虑了分析各方面的不确定性。模拟实验说明了所提出方法的有效性。对EarlyBird队列研究的应用展示了其在实现葡萄糖生成和代谢中不同分子过程的统计整合方面的实际效用。从这项研究中,我们能够表明5至16岁的血糖水平与血清中不同的循环代谢物水平相关,并且可以随时间拟合出各种形状的轨迹。对解释葡萄糖轨迹贡献最大的代谢物往往参与不同的中心能量代谢组学途径。该方法提供了一个工具,用于生成与儿童期和青少年期肥胖及血糖控制相关的新假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a806/11682272/11970392ba43/41598_2024_82718_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验