文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

缺失数据:一种实践的统计框架。

Missing data: A statistical framework for practice.

机构信息

Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK.

MRC Clinical Trials Unit at UCL, London, UK.

出版信息

Biom J. 2021 Jun;63(5):915-947. doi: 10.1002/bimj.202000196. Epub 2021 Feb 24.


DOI:10.1002/bimj.202000196
PMID:33624862
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7615108/
Abstract

Missing data are ubiquitous in medical research, yet there is still uncertainty over when restricting to the complete records is likely to be acceptable, when more complex methods (e.g. maximum likelihood, multiple imputation and Bayesian methods) should be used, how they relate to each other and the role of sensitivity analysis. This article seeks to address both applied practitioners and researchers interested in a more formal explanation of some of the results. For practitioners, the framework, illustrative examples and code should equip them with a practical approach to address the issues raised by missing data (particularly using multiple imputation), alongside an overview of how the various approaches in the literature relate. In particular, we describe how multiple imputation can be readily used for sensitivity analyses, which are still infrequently performed. For those interested in more formal derivations, we give outline arguments for key results, use simple examples to show how methods relate, and references for full details. The ideas are illustrated with a cohort study, a multi-centre case control study and a randomised clinical trial.

摘要

在医学研究中,缺失数据是普遍存在的,但仍不确定何时限制使用完整记录是可以接受的,何时应该使用更复杂的方法(例如最大似然法、多重插补法和贝叶斯方法),以及它们之间的关系和敏感性分析的作用。本文旨在为对缺失数据(特别是使用多重插补)的一些结果进行更正式解释感兴趣的应用实践者和研究人员提供帮助。对于实践者来说,该框架、说明性示例和代码应该使他们能够采用一种实用的方法来解决缺失数据引起的问题,同时还概述了文献中各种方法的关系。特别是,我们描述了如何使用多重插补进行敏感性分析,而敏感性分析仍然很少进行。对于那些对更正式推导感兴趣的人,我们给出了关键结果的概要论证,使用简单的示例来说明方法之间的关系,并提供了详细信息的参考文献。这些想法通过一项队列研究、一项多中心病例对照研究和一项随机临床试验得到了说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/335adf905997/EMS177343-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/9d0aa91753ab/EMS177343-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/b855942ab476/EMS177343-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/b4aa13ff3532/EMS177343-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/d09b92b220e1/EMS177343-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/e2ca8384442f/EMS177343-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/335adf905997/EMS177343-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/9d0aa91753ab/EMS177343-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/b855942ab476/EMS177343-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/b4aa13ff3532/EMS177343-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/d09b92b220e1/EMS177343-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/e2ca8384442f/EMS177343-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5259/7615108/335adf905997/EMS177343-f006.jpg

相似文献

[1]
Missing data: A statistical framework for practice.

Biom J. 2021-6

[2]
BAMITA: Bayesian multiple imputation for tensor arrays.

Biostatistics. 2024-12-31

[3]
Development of a practical approach to expert elicitation for randomised controlled trials with missing health outcomes: Application to the IMPROVE trial.

Clin Trials. 2017-8

[4]
An Approach to Addressing Multiple Imputation Model Uncertainty Using Bayesian Model Averaging.

Multivariate Behav Res. 2020

[5]
Multiple imputation of missing data in nested case-control and case-cohort studies.

Biometrics. 2018-12

[6]
Multiple imputation as a flexible tool for missing data handling in clinical research.

Behav Res Ther. 2016-11-18

[7]
Handling missing data in patient-level cost-effectiveness analysis alongside randomised clinical trials.

Appl Health Econ Health Policy. 2005

[8]
Accounting for bias due to outcome data missing not at random: comparison and illustration of two approaches to probabilistic bias analysis: a simulation study.

BMC Med Res Methodol. 2024-11-13

[9]
When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts.

BMC Med Res Methodol. 2017-12-6

[10]
Multiple imputation for longitudinal data using Bayesian lasso imputation model.

Stat Med. 2022-3-15

引用本文的文献

[1]
Missing data in single-cell transcriptomes reveals transcriptional shifts.

bioRxiv. 2025-8-21

[2]
Bayesian Analysis of Longitudinal Ordinal Data with Missing Values Using Multivariate Probit Models.

J Stat Appl Probab. 2025-5

[3]
Development and validation of a diagnostic prediction model for pancreatic ductal adenocarcinoma: VAPOR 1, protocol for a prospective multicentre case-control study.

BMJ Open. 2025-8-27

[4]
Causal estimation of time-varying treatments in observational studies: a scoping review of methods, applications, and missing data practices.

BMC Med Res Methodol. 2025-8-27

[5]
A Bayesian life-course linear structural equations model (BLSEM) to explore the development of body mass index (BMI) from the prenatal stage until middle age.

Int J Obes (Lond). 2025-8-20

[6]
Bias and Efficiency Comparison between Multiple Imputation and Available-Case Analysis for Missing Data in Longitudinal Models.

Stat Biosci. 2025-6-12

[7]
Load and Recovery Monitoring in Top-Level Youth Soccer Players: Exploring the Associations of a Web Application-Based Score With Recognized Load Measures.

Eur J Sport Sci. 2025-9

[8]
Machine learning analysis of greenhouse gas sources impacting Africa's food security nexus.

Sci Rep. 2025-8-6

[9]
Performance of CAC-prob in predicting coronary artery calcium score: an external validation study in a high-CAC burden population.

BMC Med Inform Decis Mak. 2025-8-4

[10]
Multiple Imputation of Missing Covariates When Using the Fine-Gray Model.

Stat Med. 2025-7

本文引用的文献

[1]
Framework for the treatment and reporting of missing data in observational studies: The Treatment And Reporting of Missing data in Observational Studies framework.

J Clin Epidemiol. 2021-6

[2]
Common Methods for Handling Missing Data in Marginal Structural Models: What Works and Why.

Am J Epidemiol. 2021-4-6

[3]
Sensitivity analysis for clinical trials with missing continuous outcome data using controlled multiple imputation: A practical guide.

Stat Med. 2020-9-20

[4]
A framework for extending trial design to facilitate missing data sensitivity analyses.

BMC Med Res Methodol. 2020-3-17

[5]
Reference-based sensitivity analysis for time-to-event data.

Pharm Stat. 2019-11

[6]
Multiple imputation for discrete data: Evaluation of the joint latent normal model.

Biom J. 2019-7

[7]
Information-anchored sensitivity analysis: theory and application.

J R Stat Soc Ser A Stat Soc. 2019-2

[8]
Multiple imputation in Cox regression when there are time-varying effects of covariates.

Stat Med. 2018-7-16

[9]
On the use of the not-at-random fully conditional specification (NARFCS) procedure in practice.

Stat Med. 2018-4-2

[10]
Development of a practical approach to expert elicitation for randomised controlled trials with missing health outcomes: Application to the IMPROVE trial.

Clin Trials. 2017-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索