Suppr超能文献

通过联合生物标志物方法优化T细胞炎症特征以预测非小细胞肺癌的免疫治疗反应

Optimizing T cell inflamed signature through a combination biomarker approach for predicting immunotherapy response in NSCLC.

作者信息

Chen Yun-Ching, Chen Ariel Yung-Chia, Hong Rui, Huang Bevan Emma, Pirooznia Mehdi

机构信息

Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.

出版信息

Sci Rep. 2024 Dec 28;14(1):31382. doi: 10.1038/s41598-024-82903-9.

Abstract

The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers. These additional signatures, however, showed negative contributions to prediction, hinting at immune alterations affecting therapy. Based on this, we proposed a combination biomarker approach that integrates the T cell inflamed GEP with immune-altered signatures, derived from the SU2C-MARK cohort using a machine-learning approach, as novel biomarkers. These signatures consisted of genes highly expressed in myeloid and stromal cells. We then assessed the predictive ability of these combined biomarkers in six independent cancer cohorts treated with anti-PD-1. The combined biomarkers demonstrated enhanced performance in NSCLC and gastric cancer cohorts, but not in melanoma cohorts. Our study introduces new biomarkers for predicting anti-PD-(L)1 response in NSCLC and offers mechanistic insights into treatment efficacy.

摘要

抗程序性死亡蛋白1(PD-1)/程序性死亡配体1(PD-L1)疗法的引入彻底改变了晚期非小细胞肺癌(NSCLC)的治疗方式,但缓解率仍然不高,这凸显了对预测性生物标志物的需求。虽然T细胞炎症基因表达谱(GEP)已被证明可预测多种癌症对抗PD-1治疗的反应,但在“勇敢抗癌-马克”(SU2C-MARK)基金会的一个大型NSCLC队列中却未得到验证。重新分析显示,单独的T细胞炎症GEP并无预测价值,但与髓系细胞标志物的基因特征相结合时,其预测性能显著提高。然而,这些额外的特征对预测有负面影响,提示免疫改变影响治疗效果。基于此,我们提出了一种联合生物标志物方法,将T细胞炎症GEP与免疫改变特征相结合,通过机器学习方法从SU2C-MARK队列中得出,作为新型生物标志物。这些特征由在髓系和基质细胞中高表达的基因组成。然后,我们评估了这些联合生物标志物在接受抗PD-1治疗的六个独立癌症队列中的预测能力。联合生物标志物在NSCLC和胃癌队列中表现出更强的预测性能,但在黑色素瘤队列中并非如此。我们的研究为预测NSCLC对抗PD-(L)1治疗的反应引入了新的生物标志物,并为治疗疗效提供了机制性见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5585/11682295/448813454a08/41598_2024_82903_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验