Huang Wengang, Chan Bun, Yang Yuwei, Chen Peng, Wang Jingjing, Casey Lachlan, Atzori Cesare, Schulli Tobias, Mathon Olivier, Hackbarth Haira G, Bedford Nicholas M, Appadoo Dominique, Li Xuemei, Lin Tongen, Lin Rijia, Lee Jaeho, Wang Zhiliang, Chen Vicki, Cheetham Anthony K, Wang Lianzhou, Hou Jingwei
School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
Graduate School of Engineering, Nagasaki University, Nagasaki 852-8521, Japan.
J Am Chem Soc. 2025 Jan 29;147(4):3195-3205. doi: 10.1021/jacs.4c12619. Epub 2024 Dec 29.
The development of efficient artificial photosynthesis systems is crucial for sustainable chemical production, as they mimic natural processes to convert solar energy into chemical products, thereby addressing both energy and environmental challenges. The main bottlenecks in current research include fabricating highly selective, stable, and scalable catalysts, as well as effectively harnessing the full spectrum of light, particularly the low-energy, long-wavelength portion. Herein, we report a novel composite photocatalyst system based on lead halide perovskites embedded in functionalized MOF glass. The construction of a well-defined interface between the light-harvesting perovskite and stable Rh single-atom-containing MOF glass mimics the functions of photosystem I (PS I). This facilitates efficient photoinduced electron generation under visible light and subsequent electron transfer for coenzyme (NADH) regeneration with high selectivity. The regenerated NADH can then be consumed by immobilized enzymes for CO reduction, realizing the artificial photosynthesis process for formic acid generation. This work also elucidates the interactions and optoelectronic responses between MOF glass and perovskites, offering insights into the design and fabrication of nanocomposite photocatalysts for other advanced chemical syntheses.
高效人工光合作用系统的开发对于可持续化学生产至关重要,因为它们模仿自然过程将太阳能转化为化学产品,从而应对能源和环境挑战。当前研究的主要瓶颈包括制造高选择性、稳定且可扩展的催化剂,以及有效利用整个光谱,特别是低能量、长波长部分。在此,我们报道了一种基于嵌入功能化MOF玻璃中的卤化铅钙钛矿的新型复合光催化剂体系。在光捕获钙钛矿与稳定的含Rh单原子MOF玻璃之间构建明确的界面,模仿了光系统I(PS I)的功能。这有助于在可见光下高效光致电子生成以及随后的电子转移,以高选择性进行辅酶(NADH)再生。再生的NADH随后可被固定化酶消耗以进行CO还原,实现生成甲酸的人工光合作用过程。这项工作还阐明了MOF玻璃与钙钛矿之间的相互作用和光电响应,为用于其他先进化学合成的纳米复合光催化剂的设计和制造提供了见解。