National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, United States.
Sci Total Environ. 2018 Jun 1;626:807-816. doi: 10.1016/j.scitotenv.2018.01.139. Epub 2018 Feb 19.
Air pollution epidemiology studies of ambient fine particulate matter (PM) often use outdoor concentrations as exposure surrogates, which can induce exposure error. The goal of this study was to improve ambient PM exposure assessments for a repeated measurements study with 22 diabetic individuals in central North Carolina called the Diabetes and Environment Panel Study (DEPS) by applying the Exposure Model for Individuals (EMI), which predicts five tiers of individual-level exposure metrics for ambient PM using outdoor concentrations, questionnaires, weather, and time-location information. Using EMI, we linked a mechanistic air exchange rate (AER) model to a mass-balance PM infiltration model to predict residential AER (Tier 1), infiltration factors (F, Tier 2), indoor concentrations (C, Tier 3), personal exposure factors (F, Tier 4), and personal exposures (E, Tier 5) for ambient PM. We applied EMI to predict daily PM exposure metrics (Tiers 1-5) for 174 participant-days across the 13 months of DEPS. Individual model predictions were compared to a subset of daily measurements of F and E (Tiers 4-5) from the DEPS participants. Model-predicted F and E corresponded well to daily measurements with a median difference of 14% and 23%; respectively. Daily model predictions for all 174 days showed considerable temporal and house-to-house variability of AER, F, and C (Tiers 1-3), and person-to-person variability of F and E (Tiers 4-5). Our study demonstrates the capability of predicting individual-level ambient PM exposure metrics for an epidemiological study, in support of improving risk estimation.
空气污染流行病学研究常使用室外浓度作为暴露替代物,这可能会导致暴露误差。本研究的目的是通过应用个体暴露模型(EMI),来改善北卡罗来纳州中部一项名为糖尿病与环境研究小组(DEPS)的重复测量研究中的环境 PM 暴露评估,该模型使用室外浓度、问卷、天气和时间-位置信息来预测个体水平的五个层次的环境 PM 暴露指标。使用 EMI,我们将一个机械空气交换率(AER)模型与一个质量平衡 PM 渗透模型联系起来,以预测住宅 AER(第 1 层)、渗透系数(F,第 2 层)、室内浓度(C,第 3 层)、个体暴露系数(F,第 4 层)和个体暴露(E,第 5 层)。我们将 EMI 应用于预测 DEPS 13 个月内的 174 名参与者的 174 天的每日 PM 暴露指标(第 1-5 层)。个体模型预测与 DEPS 参与者的每日 F 和 E(第 4-5 层)测量值的子集进行了比较。模型预测的 F 和 E 与每日测量值具有良好的一致性,中位数差异分别为 14%和 23%。所有 174 天的每日模型预测显示,AER、F 和 C(第 1-3 层)具有相当大的时间和房屋间变异性,以及 F 和 E(第 4-5 层)的个体间变异性。我们的研究表明,能够预测流行病学研究中的个体水平环境 PM 暴露指标,有助于提高风险估计。