Auslender Ilya, Letti Giorgio, Heydari Yasaman, Zaccaria Clara, Pavesi Lorenzo
Department of Physics, University of Trento, Via Sommarive 14, Trento, 38123, TN, Italy.
Centre for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, Trento, 38123, TN, Italy.
Neural Netw. 2025 Apr;184:107058. doi: 10.1016/j.neunet.2024.107058. Epub 2024 Dec 26.
In this study, we address the challenge of analyzing electrophysiological measurements in neuronal networks. Our computational model, based on the Reservoir Computing Network (RCN) architecture, deciphers spatio-temporal data obtained from electrophysiological measurements of neuronal cultures. By reconstructing the network structure on a macroscopic scale, we reveal the connectivity between neuronal units. Notably, our model outperforms common methods such as Cross-Correlation, Transfer-Entropy, and a recently developed related algorithm in predicting the network's connectivity map. Furthermore, we experimentally validate its ability to forecast network responses to specific inputs, including localized optogenetic stimuli.
在本研究中,我们应对了分析神经元网络中电生理测量数据的挑战。我们基于储层计算网络(RCN)架构的计算模型,解读从神经元培养物的电生理测量中获得的时空数据。通过在宏观尺度上重建网络结构,我们揭示了神经元单元之间的连接性。值得注意的是,在预测网络连接图谱方面,我们的模型优于互相关、转移熵等常用方法以及最近开发的一种相关算法。此外,我们通过实验验证了其预测网络对特定输入(包括局部光遗传学刺激)的反应的能力。