School of Computer Science and Communication, KTH, 10044 Stockholm, Sweden.
Neuroinformatics. 2012 Jul;10(3):287-304. doi: 10.1007/s12021-012-9146-1.
The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.
连接集代数(CSA)是一种新颖且通用的形式化方法,可用于描述从小规模到大规模结构的神经元网络模型中的连通性。该代数提供了运算符,可将更简单的连接组合成更复杂的连接集,还提供了这些集合的参数化。CSA 的表达能力足以描述广泛的连接模式,包括多种类型的随机和/或几何相关连接,并且可以作为科学写作中网络结构的简洁表示法。CSA 的实现允许在并行神经元网络模拟器中对连接进行可扩展且高效的表示,甚至可以避免在计算机内存中显式表示连接。CSA 的表达能力使得网络结构的原型设计变得容易。该代数的 C++版本已实现,并用于大规模神经元网络模拟(Djurfeldt 等人,IBM J Res Dev 52(1/2):31-42,2008b),并且 Python 中的实现已公开发布。