Suppr超能文献

连接集代数——一种用于神经元网络模型中连接结构表示的新形式化方法。

The connection-set algebra--a novel formalism for the representation of connectivity structure in neuronal network models.

机构信息

School of Computer Science and Communication, KTH, 10044 Stockholm, Sweden.

出版信息

Neuroinformatics. 2012 Jul;10(3):287-304. doi: 10.1007/s12021-012-9146-1.

Abstract

The connection-set algebra (CSA) is a novel and general formalism for the description of connectivity in neuronal network models, from small-scale to large-scale structure. The algebra provides operators to form more complex sets of connections from simpler ones and also provides parameterization of such sets. CSA is expressive enough to describe a wide range of connection patterns, including multiple types of random and/or geometrically dependent connectivity, and can serve as a concise notation for network structure in scientific writing. CSA implementations allow for scalable and efficient representation of connectivity in parallel neuronal network simulators and could even allow for avoiding explicit representation of connections in computer memory. The expressiveness of CSA makes prototyping of network structure easy. A C+ + version of the algebra has been implemented and used in a large-scale neuronal network simulation (Djurfeldt et al., IBM J Res Dev 52(1/2):31-42, 2008b) and an implementation in Python has been publicly released.

摘要

连接集代数(CSA)是一种新颖且通用的形式化方法,可用于描述从小规模到大规模结构的神经元网络模型中的连通性。该代数提供了运算符,可将更简单的连接组合成更复杂的连接集,还提供了这些集合的参数化。CSA 的表达能力足以描述广泛的连接模式,包括多种类型的随机和/或几何相关连接,并且可以作为科学写作中网络结构的简洁表示法。CSA 的实现允许在并行神经元网络模拟器中对连接进行可扩展且高效的表示,甚至可以避免在计算机内存中显式表示连接。CSA 的表达能力使得网络结构的原型设计变得容易。该代数的 C++版本已实现,并用于大规模神经元网络模拟(Djurfeldt 等人,IBM J Res Dev 52(1/2):31-42,2008b),并且 Python 中的实现已公开发布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验