Suppr超能文献

基于集成学习的用于鉴别胶质母细胞瘤脑转移的放射组学模型。

Ensemble learning-based radiomics model for discriminating brain metastasis from glioblastoma.

作者信息

Zeng Qi, Jia Fangxu, Tang Shengming, He Haoling, Fu Yan, Wang Xueying, Zhang Jinfan, Tan Zeming, Tang Haiyun, Wang Jing, Yi Xiaoping, Chen Bihong T

机构信息

Department of Radiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, PR China.

Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi, PR China.

出版信息

Eur J Radiol. 2025 Feb;183:111900. doi: 10.1016/j.ejrad.2024.111900. Epub 2024 Dec 24.

Abstract

OBJECTIVE

Differentiating between brain metastasis (BM) and glioblastoma (GBM) preoperatively is challenging due to their similar imaging features on conventional brain MRI. This study aimed to enhance diagnostic accuracy through a machine learning model based on MRI radiomics data.

METHODS

This retrospective study included 235 patients with confirmed solitary BM and 273 patients with GBM. Patients were randomly assigned to the training (n = 356) or the validation (n = 152) cohort. Conventional brain MRI sequences including T1-weighted imaging (T1WI), contrast-enhanced_T1WI, and T2-weighted imaging (T2WI) were acquired. Brain tumors were delineated on all three sequences and segmented. Features were selected from demographic, clinical, and radiomic data. An integrated ensemble machine learning model, i.e., the elastic regression-SVM-SVM model (ERSS) and a multivariable logistic regression (LR) model combining demographic, clinical, and radiomic data were built for predictive modeling. Model efficiency was evaluated using discrimination, calibration, and decision curve analyses. Additionally, external validation was performed using an independent cohort consisting of 47 patients with GBM and 43 patients with isolated BM to assess the ERSS model generalizability.

RESULTS

The ERSS model demonstrated more optimal classification performance (AUC: 0.9548, 95% CI: 0.9337-0.9734 in training cohort; AUC: 0.9716, 95% CI: 0.9485-0.9895 in validation cohort) as compared to the LR model according to the receiver operating characteristic (ROC) curve and decision curve for the internal cohort. The external validation cohort had less optimal but still robust performance (AUC: 0.7174, 95% CI: 0.6172-0.8024). The ERSS model with integration of multiple classifiers, including elastic net, random forest and support vector machine, produced robust predictive performance and outperformed the LR method.

CONCLUSION

The results suggested that the integrated machine learning model, i.e., the ERSS model, had the potential for efficient and accurate preoperative differentiation of BM from GBM, which may improve clinical decision-making and outcomes of patients with brain tumors.

摘要

目的

由于脑转移瘤(BM)和胶质母细胞瘤(GBM)在传统脑MRI上具有相似的影像学特征,术前鉴别两者具有挑战性。本研究旨在通过基于MRI影像组学数据的机器学习模型提高诊断准确性。

方法

本回顾性研究纳入了235例确诊为孤立性BM的患者和273例GBM患者。患者被随机分配到训练队列(n = 356)或验证队列(n = 152)。采集包括T1加权成像(T1WI)、增强T1WI和T2加权成像(T2WI)在内的传统脑MRI序列。在所有三个序列上勾勒并分割脑肿瘤。从人口统计学、临床和影像组学数据中选择特征。构建了一个集成的机器学习模型,即弹性回归 - 支持向量机 - 支持向量机模型(ERSS)以及一个结合人口统计学、临床和影像组学数据的多变量逻辑回归(LR)模型用于预测建模。使用判别分析、校准分析和决策曲线分析评估模型效率。此外,使用由47例GBM患者和43例孤立性BM患者组成的独立队列进行外部验证,以评估ERSS模型的可推广性。

结果

根据内部队列的受试者操作特征(ROC)曲线和决策曲线,与LR模型相比,ERSS模型表现出更优的分类性能(训练队列中AUC:0.9548,95%CI:0.9337 - 0.9734;验证队列中AUC:0.9716,95%CI:0.9485 - 0.9895)。外部验证队列的性能虽不那么理想但仍较为稳健(AUC:0.7174,95%CI:0.6172 - 0.8024)。集成了包括弹性网络、随机森林和支持向量机在内的多个分类器的ERSS模型产生了稳健的预测性能,并且优于LR方法。

结论

结果表明,集成机器学习模型即ERSS模型有潜力高效、准确地在术前鉴别BM和GBM,这可能改善脑肿瘤患者的临床决策和治疗结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验