Suppr超能文献

通过非增强CT影像组学和深度学习评估身体成分并预测传染性胰腺坏死

Assessment of body composition and prediction of infectious pancreatic necrosis via non-contrast CT radiomics and deep learning.

作者信息

Huang Bingyao, Gao Yi, Wu Lina

机构信息

Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China.

Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, China.

出版信息

Front Microbiol. 2024 Dec 13;15:1509915. doi: 10.3389/fmicb.2024.1509915. eCollection 2024.

Abstract

AIM

The current study aims to delineate subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), the sacrospinalis muscle, and all abdominal musculature at the L3-L5 vertebral level from non-contrast computed tomography (CT) imagery using deep learning algorithms. Subsequently, radiomic features are collected from these segmented images and subjected to medical interpretation.

MATERIALS AND METHODS

This retrospective analysis includes a cohort of 315 patients diagnosed with acute necrotizing pancreatitis (ANP) who had undergone comprehensive whole-abdomen CT scans. The no new net (nnU-Net) architecture was adopted for the imagery segmentation, while Python scripts were employed to derive radiomic features from the segmented non-contrast CT images. In light of the intrinsic medical relevance of specific features, two categories were selected for analysis: first-order statistics and morphological characteristics. A correlation analysis was conducted, and statistically significant features were subjected to medical scrutiny.

RESULTS

With respect to VAT, skewness ( = 0.004) and uniformity ( = 0.036) emerged as statistically significant; for SAT, significant features included skewness ( = 0.023), maximum two-dimensional (2D) diameter slice ( = 0.020), and maximum three-dimensional (3D) diameter ( = 0.044); for the abdominal muscles, statistically significant metrics were the interquartile range (IQR;  = 0.023), mean absolute deviation ( = 0.039), robust mean absolute deviation ( = 0.015), elongation ( = 0.025), sphericity ( = 0.010), and surface volume ratio ( = 0.014); and for the sacrospinalis muscle, significant indices comprised the IQR ( = 0.018), mean absolute deviation ( = 0.049), robust mean absolute deviation ( = 0.025), skewness ( = 0.008), maximum 2D diameter slice ( = 0.008), maximum 3D diameter ( = 0.005), sphericity ( = 0.011), and surface volume ratio ( = 0.005).

CONCLUSION

Diminished localized deposition of VAT and SAT, homogeneity in the VAT and SAT density, augmented SAT volume, and a dispersed and heterogeneous distribution of abdominal muscle density are identified as risk factors for infectious pancreatic necrosis (IPN).

摘要

目的

本研究旨在利用深度学习算法,从非增强计算机断层扫描(CT)图像中勾勒出L3 - L5椎体水平的皮下脂肪组织(SAT)、内脏脂肪组织(VAT)、骶棘肌和所有腹部肌肉组织。随后,从这些分割图像中收集放射组学特征并进行医学解读。

材料与方法

这项回顾性分析纳入了315例被诊断为急性坏死性胰腺炎(ANP)并接受了全腹CT扫描的患者队列。采用无新网络(nnU-Net)架构进行图像分割,同时使用Python脚本从分割后的非增强CT图像中提取放射组学特征。鉴于特定特征的内在医学相关性,选择两类进行分析:一阶统计量和形态特征。进行了相关性分析,并对具有统计学意义的特征进行医学审查。

结果

关于VAT,偏度(=0.004)和均匀度(=0.036)具有统计学意义;对于SAT,显著特征包括偏度(=0.023)、最大二维(2D)直径切片(=0.020)和最大三维(3D)直径(=0.044);对于腹部肌肉,具有统计学意义的指标是四分位数间距(IQR;=0.023)、平均绝对偏差(=0.039)、稳健平均绝对偏差(=0.015)、伸长率(=0.025)、球形度(=0.010)和表面积体积比(=0.014);对于骶棘肌,显著指标包括IQR(=0.018)、平均绝对偏差(=0.049)、稳健平均绝对偏差(=0.025)、偏度(=0.008)、最大2D直径切片(=0.008)、最大3D直径(=0.005)、球形度(=0.011)和表面积体积比(=0.005)。

结论

VAT和SAT局部沉积减少、VAT和SAT密度均匀、SAT体积增大以及腹部肌肉密度分散且异质性分布被确定为感染性胰腺坏死(IPN)的危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8439/11671486/fdf7b77e5f14/fmicb-15-1509915-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验