Suppr超能文献

基于腹部 CT 图像的骨骼肌和脂肪组织自动分割深度学习模型的外部验证。

External validation of a deep learning model for automatic segmentation of skeletal muscle and adipose tissue on abdominal CT images.

机构信息

Department of Surgery, Maastricht University Medical Center, Maastricht, 6200 MD, The Netherlands.

NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, 6229 ER, The Netherlands.

出版信息

Br J Radiol. 2024 Dec 1;97(1164):2015-2023. doi: 10.1093/bjr/tqae191.

Abstract

OBJECTIVES

Body composition assessment using CT images at the L3-level is increasingly applied in cancer research and has been shown to be strongly associated with long-term survival. Robust high-throughput automated segmentation is key to assess large patient cohorts and to support implementation of body composition analysis into routine clinical practice. We trained and externally validated a deep learning neural network (DLNN) to automatically segment L3-CT images.

METHODS

Expert-drawn segmentations of visceral and subcutaneous adipose tissue (VAT/SAT) and skeletal muscle (SM) of L3-CT-images of 3187 patients undergoing abdominal surgery were used to train a DLNN. The external validation cohort was comprised of 2535 patients with abdominal cancer. DLNN performance was evaluated with (geometric) dice similarity (DS) and Lin's concordance correlation coefficient.

RESULTS

There was a strong concordance between automatic and manual segmentations with median DS for SM, VAT, and SAT of 0.97 (IQR: 0.95-0.98), 0.98 (IQR: 0.95-0.98), and 0.95 (IQR: 0.92-0.97), respectively. Concordance correlations were excellent: SM 0.964 (0.959-0.968), VAT 0.998 (0.998-0.998), and SAT 0.992 (0.991-0.993). Bland-Altman metrics indicated only small and clinically insignificant systematic offsets; SM radiodensity: 0.23 Hounsfield units (0.5%), SM: 1.26 cm2.m-2 (2.8%), VAT: -1.02 cm2.m-2 (1.7%), and SAT: 3.24 cm2.m-2 (4.6%).

CONCLUSION

A robustly-performing and independently externally validated DLNN for automated body composition analysis was developed.

ADVANCES IN KNOWLEDGE

This DLNN was successfully trained and externally validated on several large patient cohorts. The trained algorithm could facilitate large-scale population studies and implementation of body composition analysis into clinical practice.

摘要

目的

使用 L3 水平的 CT 图像进行人体成分评估在癌症研究中得到了越来越多的应用,并且已被证明与长期生存密切相关。稳健的高通量自动化分割是评估大量患者队列并支持将人体成分分析纳入常规临床实践的关键。我们训练并外部验证了一种深度学习神经网络(DLNN),以自动分割 L3-CT 图像。

方法

使用 3187 例接受腹部手术的患者的 L3-CT 图像的内脏和皮下脂肪组织(VAT/SAT)和骨骼肌(SM)的专家绘制分割来训练 DLNN。外部验证队列由 2535 例腹部癌症患者组成。使用(几何)Dice 相似性(DS)和 Lin 的一致性相关系数评估 DLNN 的性能。

结果

自动分割与手动分割之间具有很强的一致性,SM、VAT 和 SAT 的中位数 DS 分别为 0.97(IQR:0.95-0.98)、0.98(IQR:0.95-0.98)和 0.95(IQR:0.92-0.97)。一致性相关性非常好:SM 为 0.964(0.959-0.968),VAT 为 0.998(0.998-0.998),SAT 为 0.992(0.991-0.993)。Bland-Altman 指标仅显示较小且临床意义不大的系统偏移;SM 密度:0.23 亨斯菲尔德单位(0.5%),SM:1.26 cm2.m-2(2.8%),VAT:-1.02 cm2.m-2(1.7%),和 SAT:3.24 cm2.m-2(4.6%)。

结论

开发了一种用于自动人体成分分析的性能稳健且独立外部验证的 DLNN。

知识进展

该 DLNN 已在多个大型患者队列中成功训练和外部验证。经过训练的算法可以促进大规模人群研究,并将人体成分分析纳入临床实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d833/11573127/6e47245fb73f/tqae191f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验