Suppr超能文献

一种具有浅层神经网络分类器的新型网络级融合深度学习架构,用于从无线胶囊内窥镜图像中进行胃肠道癌分类。

A novel network-level fused deep learning architecture with shallow neural network classifier for gastrointestinal cancer classification from wireless capsule endoscopy images.

作者信息

Khan Muhammad Attique, Shafiq Usama, Hamza Ameer, Mirza Anwar M, Baili Jamel, AlHammadi Dina Abdulaziz, Cho Hee-Chan, Chang Byoungchol

机构信息

Department of Computer Science and Engineering, College of Computer Engineering and Science, Prince Mohammad Bin Fahd University, Al-Khobar, KSA, Kingdom of Saudi Arabia.

Department of Computer Science, HITEC University, Taxila, Pakistan.

出版信息

BMC Med Inform Decis Mak. 2025 Mar 31;25(1):150. doi: 10.1186/s12911-025-02966-0.

Abstract

Deep learning has significantly contributed to medical imaging and computer-aided diagnosis (CAD), providing accurate disease classification and diagnosis. However, challenges such as inter- and intra-class similarities, class imbalance, and computational inefficiencies due to numerous hyperparameters persist. This study aims to address these challenges by presenting a novel deep-learning framework for classifying and localizing gastrointestinal (GI) diseases from wireless capsule endoscopy (WCE) images. The proposed framework begins with dataset augmentation to enhance training robustness. Two novel architectures, Sparse Convolutional DenseNet201 with Self-Attention (SC-DSAN) and CNN-GRU, are fused at the network level using a depth concatenation layer, avoiding the computational costs of feature-level fusion. Bayesian Optimization (BO) is employed for dynamic hyperparameter tuning, and an Entropy-controlled Marine Predators Algorithm (EMPA) selects optimal features. These features are classified using a Shallow Wide Neural Network (SWNN) and traditional classifiers. Experimental evaluations on the Kvasir-V1 and Kvasir-V2 datasets demonstrate superior performance, achieving accuracies of 99.60% and 95.10%, respectively. The proposed framework offers improved accuracy, precision, and computational efficiency compared to state-of-the-art models. The proposed framework addresses key challenges in GI disease diagnosis, demonstrating its potential for accurate and efficient clinical applications. Future work will explore its adaptability to additional datasets and optimize its computational complexity for broader deployment.

摘要

深度学习对医学成像和计算机辅助诊断(CAD)做出了重大贡献,能够提供准确的疾病分类和诊断。然而,诸如类间和类内相似性、类别不平衡以及由于众多超参数导致的计算效率低下等挑战仍然存在。本研究旨在通过提出一种新颖的深度学习框架来解决这些挑战,该框架用于从无线胶囊内镜(WCE)图像中对胃肠道(GI)疾病进行分类和定位。所提出的框架首先进行数据集增强以提高训练的鲁棒性。两种新颖的架构,即带有自注意力机制的稀疏卷积密集连接网络201(SC-DSAN)和卷积神经网络-门控循环单元(CNN-GRU),在网络层面使用深度拼接层进行融合,避免了特征级融合的计算成本。采用贝叶斯优化(BO)进行动态超参数调整,并使用熵控制的海洋捕食者算法(EMPA)选择最优特征。这些特征使用浅宽神经网络(SWNN)和传统分类器进行分类。在Kvasir-V1和Kvasir-V2数据集上的实验评估显示出卓越的性能,准确率分别达到99.60%和95.10%。与现有模型相比,所提出的框架在准确率、精确率和计算效率方面都有所提高。所提出的框架解决了胃肠道疾病诊断中的关键挑战,展示了其在准确高效临床应用中的潜力。未来的工作将探索其对其他数据集的适应性,并优化其计算复杂度以实现更广泛的部署。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed24/11956435/dc541f894826/12911_2025_2966_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验