Taylor Hoyt Patrick, Wu Zhengwang, Wu Ye, Shen Dinggang, Zhang Han, Yap Pew-Thian
Department of Radiology and BRIC, University of North Carolina, Chapel Hill, USA.
Med Image Comput Comput Assist Interv. 2019 Oct;11766:475-483. doi: 10.1007/978-3-030-32248-9_53. Epub 2019 Oct 10.
Meaningful division of the human cortex into distinct regions is a longstanding goal in neuroscience. Many of the most widely cited parcellations utilize anatomical priors or depend on functional magnetic resonance imaging (MRI) data while there exists a relative dearth of parcellations that use only structural data based on diffusion MRI. In light of this, and the fact that structural connectivity represents the underlying substrates of functional connectivity, we employ a novel high-resolution, vertex-level graph model of the whole-brain structural connectome and show that the harmonic modes of this graph can be used to achieve parcellations that qualitatively agree with the widely accepted atlases in the literature. Further, we detail a multi-layer formulation of the structural connectome graph and demonstrate that hierarchical clustering of its harmonic modes yields subject-specific parcellations at varying resolutions with ensured and tunable group-level correspondence.
将人类大脑皮层有意义地划分为不同区域是神经科学领域长期以来的目标。许多被广泛引用的脑图谱划分方法利用了解剖学先验知识或依赖于功能磁共振成像(MRI)数据,而仅基于扩散MRI的结构数据进行脑图谱划分的方法相对较少。鉴于此,以及结构连接性代表功能连接性的潜在基础这一事实,我们采用了一种新颖的全脑结构连接组的高分辨率顶点级图模型,并表明该图的谐波模式可用于实现与文献中广泛接受的图谱定性一致的脑图谱划分。此外,我们详细阐述了结构连接组图的多层公式,并证明对其谐波模式进行层次聚类可在不同分辨率下产生特定于个体的脑图谱划分,并确保和调整组水平的对应关系。