Mach Mathieu, Amico Enrico, Liégeois Raphaël, Preti Maria Giulia, Griffa Alessandra, Van De Ville Dimitri, Pedersen Mangor
Neuro-X Institute, Ecole Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland.
Netw Neurosci. 2024 Dec 10;8(4):1129-1148. doi: 10.1162/netn_a_00393. eCollection 2024.
Connectomes' topological organization can be quantified using graph theory. Here, we investigated brain networks in higher dimensional spaces defined by up to 10 graph theoretic nodal properties. These properties assign a score to nodes, reflecting their meaning in the network. Using 100 healthy unrelated subjects from the Human Connectome Project, we generated various connectomes (structural/functional, binary/weighted). We observed that nodal properties are correlated (i.e., they carry similar information) at whole-brain and subnetwork level. We conducted an exploratory machine learning analysis to test whether high-dimensional network information differs between sensory and association areas. Brain regions of sensory and association networks were classified with an 80-86% accuracy in a 10-dimensional (10D) space. We observed the largest gain in machine learning accuracy going from a 2D to 3D space, with a plateauing accuracy toward 10D space, and nonlinear Gaussian kernels outperformed linear kernels. Finally, we quantified the Euclidean distance between nodes in a 10D graph space. The multidimensional Euclidean distance was highest across subjects in the default mode network (in structural networks) and frontoparietal and temporal lobe areas (in functional networks). To conclude, we propose a new framework for quantifying network features in high-dimensional spaces that may reveal new network properties of the brain.
脑连接组的拓扑组织可以使用图论进行量化。在此,我们研究了由多达10个图论节点属性定义的高维空间中的脑网络。这些属性为节点赋予一个分数,反映它们在网络中的意义。我们使用来自人类连接组计划的100名健康无亲属关系的受试者,生成了各种连接组(结构/功能、二元/加权)。我们观察到,在全脑和子网层面,节点属性是相关的(即它们携带相似的信息)。我们进行了一项探索性机器学习分析,以测试高维网络信息在感觉区和联合区之间是否存在差异。在10维(10D)空间中,感觉网络和联合网络的脑区分类准确率为80 - 86%。我们观察到,从2D空间到3D空间,机器学习准确率提升最大,到10D空间时准确率趋于平稳,并且非线性高斯核优于线性核。最后,我们量化了10D图空间中节点之间的欧几里得距离。在默认模式网络(在结构网络中)以及额顶叶和颞叶区域(在功能网络中),跨受试者的多维欧几里得距离最高。总之,我们提出了一个用于量化高维空间中网络特征的新框架,该框架可能揭示大脑新的网络属性。