Suppr超能文献

在纯净生长环境下实现的超低生长温度下的锗外延生长

Ge Epitaxy at Ultralow Growth Temperatures Enabled by a Pristine Growth Environment.

作者信息

Wilflingseder Christoph, Aberl Johannes, Prado Navarrete Enrique, Hesser Günter, Groiss Heiko, Liedke Maciej O, Butterling Maik, Wagner Andreas, Hirschmann Eric, Corley-Wiciak Cedric, Zoellner Marvin H, Capellini Giovanni, Fromherz Thomas, Brehm Moritz

机构信息

Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria.

Christian Doppler Laboratory for Nanoscale Phase Transformations, Center for Surface And Nanoanalytics (ZONA), Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria.

出版信息

ACS Appl Electron Mater. 2024 Dec 11;6(12):9029-9039. doi: 10.1021/acsaelm.4c01678. eCollection 2024 Dec 24.

Abstract

Germanium (Ge), the next-in-line group-IV material, bears great potential to add functionality and performance to next-generation nanoelectronics and solid-state quantum transport based on silicon (Si) technology. Here, we investigate the direct epitaxial growth of two-dimensional high-quality crystalline Ge layers on Si deposited at ultralow growth temperatures ( = 100-350 °C) and pristine growth pressures (≲10 mbar). First, we show that a decreasing does not degrade the crystal quality of homoepitaxial Ge/Ge(001) by comparing the point defect density using positron annihilation lifetime spectroscopy. Subsequently, we present a systematic investigation of the Ge/Si(001) heteroepitaxy, varying the Ge coverage (Θ 1, 2, 4, 8, 12, and 16 nm) and (100-300 °C, in increments of 50 °C) to assess the influence of these parameters on the layer's structural quality. Atomic force microscopy revealed a rippled surface topography with superimposed grainy features and the absence of three-dimensional structures, such as quantum dots. Transmission electron microscopy unveiled pseudomorphic grains of highly crystalline growth separated by defective domains. Thanks to nanobeam scanning X-ray diffraction measurements, we were able to evidence the lattice strain fluctuations due to the ripple-like structure of the layers. We conclude that the heteroepitaxial strain contributes to the formation of the ripples, which originate from the kinetic limitations of the ultralow temperatures.

摘要

锗(Ge)作为下一个IV族材料,在为基于硅(Si)技术的下一代纳米电子学和固态量子输运增添功能和性能方面具有巨大潜力。在此,我们研究了在超低生长温度( = 100 - 350 °C)和原始生长压力(≲10 mbar)下在Si上直接外延生长二维高质量晶体Ge层的情况。首先,通过使用正电子湮没寿命谱比较点缺陷密度,我们表明降低 不会降低同质外延Ge/Ge(001)的晶体质量。随后,我们对Ge/Si(001)异质外延进行了系统研究,改变Ge覆盖率(Θ 1、2、4、8、12和16 nm)和 (100 - 300 °C,以50 °C为增量)以评估这些参数对层结构质量的影响。原子力显微镜揭示了具有叠加颗粒特征的波纹状表面形貌,并且不存在诸如量子点之类的三维结构。透射电子显微镜揭示了由缺陷区域分隔的高度结晶生长的赝晶颗粒。借助纳米束扫描X射线衍射测量,我们能够证明由于层的波纹状结构导致的晶格应变波动。我们得出结论,异质外延应变有助于形成波纹,这些波纹源于超低温度下的动力学限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc03/11673087/30ca3e54bc0f/el4c01678_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验