Suppr超能文献

基于深度学习利用PET/CT图像预测肺腺癌表皮生长因子受体突变状态

Predicting epidermal growth factor receptor mutation status of lung adenocarcinoma based on PET/CT images using deep learning.

作者信息

Huang Lele, Kong Weifang, Luo Yongjun, Xie Hongjun, Liu Jiangyan, Zhang Xin, Zhang Guojin

机构信息

Department of Nuclear Medicine, The Second Hospital and Clinical Medical School, Lanzhou University, Lanzhou, China.

Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China.

出版信息

Front Oncol. 2024 Dec 13;14:1458374. doi: 10.3389/fonc.2024.1458374. eCollection 2024.

Abstract

BACKGROUND

The aim of this study is to develop deep learning models based on F-fluorodeoxyglucose positron emission tomography/computed tomographic (F-FDG PET/CT) images for predicting individual epidermal growth factor receptor () mutation status in lung adenocarcinoma (LUAD).

METHODS

We enrolled 430 patients with non-small-cell lung cancer from two institutions in this study. The advanced Inception V3 model to predict EGFR mutations based on PET/CT images and developed CT, PET, and PET + CT models was used. Additionally, each patient's clinical characteristics (age, sex, and smoking history) and 18 CT features were recorded and analyzed. Univariate and multivariate regression analyses identified the independent risk factors for EGFR mutations, and a clinical model was established. The performance using the area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, recall, and F1-value was evaluated. The DeLong test was used to compare the predictive performance across various models.

RESULTS

Among these four models, deep learning models based on CT and PET + CT exhibit the same predictive performance, followed by PET and the clinical model. The AUC values for CT, PET, PET + CT, and clinical models in the training set are 0.933 (95% CI, 0.922-0.943), 0.895 (95% CI, 0.882-0.907), 0.931 (95% CI, 0.921-0.942), and 0.740 (95% CI, 0.685-0.796), respectively; whereas those in the testing set are:0.921 (95% CI, 0.904-0.938), 0.876 (95% CI, 0.855-0.897), 0.921 (95% CI, 0.904-0.937), and 0.721 (95% CI, 0.629-0.814), respectively. The DeLong test results confirm that all deep learning models are superior to clinical one.

CONCLUSION

The PET/CT images based on trained CNNs effectively predict and non- mutations in LUAD. The deep learning predictive models could guide treatment options.

摘要

背景

本研究旨在基于氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)图像开发深度学习模型,以预测肺腺癌(LUAD)患者个体的表皮生长因子受体(EGFR)突变状态。

方法

本研究纳入了来自两个机构的430例非小细胞肺癌患者。使用基于PET/CT图像的先进Inception V3模型来预测EGFR突变,并开发了CT、PET和PET+CT模型。此外,记录并分析了每位患者的临床特征(年龄、性别和吸烟史)以及18项CT特征。单因素和多因素回归分析确定了EGFR突变的独立危险因素,并建立了临床模型。使用受试者操作特征曲线下面积(AUC)、准确性、敏感性、特异性、召回率和F1值来评估模型性能。使用DeLong检验比较各种模型的预测性能。

结果

在这四个模型中,基于CT和PET+CT的深度学习模型表现出相同的预测性能,其次是PET模型和临床模型。训练集中CT、PET、PET+CT和临床模型的AUC值分别为0.933(95%CI,0.922-0.943)、0.895(95%CI,0.882-0.907)、0.931(95%CI,0.921-0.942)和0.740(95%CI,0.685-0.796);而测试集中的AUC值分别为0.921(95%CI,0.904-0.938)、0.876(95%CI,0.855-0.897)、0.921(95%CI,0.904-0.937)和0.721(95%CI,0.629-0.814)。DeLong检验结果证实,所有深度学习模型均优于临床模型。

结论

基于训练好的卷积神经网络的PET/CT图像能够有效预测LUAD中的EGFR突变和非突变情况。深度学习预测模型可为治疗方案提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f56/11671303/3018fbbe07d5/fonc-14-1458374-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验