Dong Yunyun, Hou Lina, Yang Wenkai, Han Jiahao, Wang Jiawen, Qiang Yan, Zhao Juanjuan, Hou Jiaxin, Song Kai, Ma Yulan, Kazihise Ntikurako Guy Fernand, Cui Yanfen, Yang Xiaotang
School of Software, Taiyuan University of Technology, Taiyuan, China.
School of Information and Computer, Taiyuan University of Technology, Taiyuan, China.
Quant Imaging Med Surg. 2021 Jun;11(6):2354-2375. doi: 10.21037/qims-20-600.
Predicting the mutation statuses of 2 essential pathogenic genes [epidermal growth factor receptor () and Kirsten rat sarcoma ()] in non-small cell lung cancer (NSCLC) based on CT is valuable for targeted therapy because it is a non-invasive and less costly method. Although deep learning technology has realized substantial computer vision achievements, CT imaging being used to predict gene mutations remains challenging due to small dataset limitations.
We propose a multi-channel and multi-task deep learning (MMDL) model for the simultaneous prediction of and mutation statuses based on CT images. First, we decomposed each 3D lung nodule into 9 views. Then, we used the pre-trained inception-attention-resnet model for each view to learn the features of the nodules. By combining 9 inception-attention-resnet models to predict the types of gene mutations in lung nodules, the models were adaptively weighted, and the proposed MMDL model could be trained end-to-end. The MMDL model utilized multiple channels to characterize the nodule more comprehensively and integrate patient personal information into our learning process.
We trained the proposed MMDL model using a dataset of 363 patients collected by our partner hospital and conducted a multi-center validation on 162 patients in The Cancer Imaging Archive (TCIA) public dataset. The accuracies for the prediction of and mutations were, respectively, 79.43% and 72.25% in the training dataset and 75.06% and 69.64% in the validation dataset.
The experimental results demonstrated that the proposed MMDL model outperformed the latest methods in predicting and mutations in NSCLC.
基于CT预测非小细胞肺癌(NSCLC)中两个关键致病基因[表皮生长因子受体(EGFR)和 Kirsten 大鼠肉瘤(KRAS)]的突变状态对于靶向治疗具有重要价值,因为它是一种非侵入性且成本较低的方法。尽管深度学习技术已在计算机视觉领域取得了显著成就,但由于数据集规模较小,利用CT成像预测基因突变仍然具有挑战性。
我们提出了一种多通道多任务深度学习(MMDL)模型,用于基于CT图像同时预测EGFR和KRAS的突变状态。首先,我们将每个3D肺结节分解为9个视图。然后,我们对每个视图使用预训练的inception-attention-resnet模型来学习结节的特征。通过组合9个inception-attention-resnet模型来预测肺结节中的基因突变类型,对模型进行自适应加权,并对提出的MMDL模型进行端到端训练。MMDL模型利用多个通道更全面地表征结节,并将患者个人信息整合到我们的学习过程中。
我们使用合作医院收集的363例患者的数据集对提出的MMDL模型进行了训练,并在癌症影像存档(TCIA)公共数据集中对162例患者进行了多中心验证。在训练数据集中,EGFR和KRAS突变预测的准确率分别为79.43%和72.25%,在验证数据集中分别为75.06%和69.64%。
实验结果表明,所提出的MMDL模型在预测NSCLC中EGFR和KRAS突变方面优于最新方法。