Wang Wei, Chen Kepan, Jiang Ting, Wu Yiyang, Wu Zheng, Ying Hang, Yu Hang, Lu Jing, Lin Jinzhong, Ouyang Defang
State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
Faculty of Health Sciences, University of Macau, Macau, China.
Nat Commun. 2024 Dec 30;15(1):10804. doi: 10.1038/s41467-024-55072-6.
Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evidenced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is traditionally optimized by inefficient and costly experimental screening. This study leverages artificial intelligence (AI) and virtual screening to facilitate the rational design of ionizable lipids by predicting two key properties of LNPs, apparent pKa and mRNA delivery efficiency. Nearly 20 million ionizable lipids were evaluated through two iterations of AI-driven generation and screening, yielding three and six new molecules, respectively. In mouse test validation, one lipid from the initial iteration, featuring a benzene ring, demonstrated performance comparable to the control DLin-MC3-DMA (MC3). Notably, all six lipids from the second iteration equaled or outperformed MC3, with one exhibiting efficacy akin to a superior control lipid SM-102. Furthermore, the AI model is interpretable in structure-activity relationships.
脂质纳米颗粒(LNPs)已被证明在mRNA递送方面是有效的,COVID-19疫苗就是证明。其关键成分可电离脂质,传统上是通过低效且昂贵的实验筛选来优化的。本研究利用人工智能(AI)和虚拟筛选,通过预测LNPs的两个关键特性——表观pKa和mRNA递送效率,来促进可电离脂质的合理设计。通过两轮由AI驱动的生成和筛选,评估了近2000万种可电离脂质,分别产生了3个和6个新分子。在小鼠测试验证中,第一次迭代得到的一种带有苯环的脂质表现出与对照DLin-MC3-DMA(MC3)相当的性能。值得注意的是,第二次迭代得到的所有6种脂质都与MC3相当或优于MC3,其中一种表现出与优质对照脂质SM-102相似的功效。此外,AI模型在构效关系方面是可解释的。