文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

作者信息

Ju Ye, Ma Chunyue, Ding Ling, Shi Mingyue, Wang Xia, Wu Dongbei, Wu Qing, Qin Xingjun, Wang Qigang

机构信息

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China.

出版信息

Nat Commun. 2024 Dec 30;15(1):10903. doi: 10.1038/s41467-024-55303-w.


DOI:10.1038/s41467-024-55303-w
PMID:39738142
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11686397/
Abstract

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage. In male New Zealand rabbit POF models, the JHA demonstrates strong adhesion and fluid-tight sealing, and maintained firm sealing for over 3 days without any decreased signs under a normal diet. After 12 days, both extraoral cutaneous and mucosal wounds achieved complete closure, with mechanical strengths comparable to normal tissues. Similar therapeutic efficacy was also confirmed in male beagle dog POF models. Thus, the proposed JHA hydrogel shows great potential for deep wound sealing and providing mechanical support to assist healing in penetrating fistulas and other injuries.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/ad632fbc90e8/41467_2024_55303_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/8779a132869d/41467_2024_55303_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/ca0e960f092e/41467_2024_55303_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/c82680a4ff66/41467_2024_55303_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/bc2a616e0660/41467_2024_55303_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/515d09e1a1bd/41467_2024_55303_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/95f43406b60e/41467_2024_55303_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/b179dda639c5/41467_2024_55303_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/77708c4d1a12/41467_2024_55303_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/ad632fbc90e8/41467_2024_55303_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/8779a132869d/41467_2024_55303_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/ca0e960f092e/41467_2024_55303_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/c82680a4ff66/41467_2024_55303_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/bc2a616e0660/41467_2024_55303_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/515d09e1a1bd/41467_2024_55303_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/95f43406b60e/41467_2024_55303_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/b179dda639c5/41467_2024_55303_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/77708c4d1a12/41467_2024_55303_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d489/11686397/ad632fbc90e8/41467_2024_55303_Fig9_HTML.jpg

相似文献

[1]
Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun. 2024-12-30

[2]
A tough Janus poly(vinyl alcohol)-based hydrogel for wound closure and anti postoperative adhesion.

Acta Biomater. 2024-10-15

[3]
A bio-inspired Janus hydrogel patch facilitates oral ulcer repair by combining prolonged wet adhesion and lubrication.

Acta Biomater. 2024-12

[4]
Janus mucosal dressing with a tough and adhesive hydrogel based on synergistic effects of gelatin, polydopamine, and nano-clay.

Acta Biomater. 2022-9-1

[5]
Mechano-Responsive, Tough, and Antibacterial Zwitterionic Hydrogels with Controllable Drug Release for Wound Healing Applications.

ACS Appl Mater Interfaces. 2020-11-25

[6]
A rapid and robust organ repair polyacrylamide/alginate adhesive hydrogel mediated via interfacial adhesion-trigger molecules.

Int J Biol Macromol. 2024-11

[7]
An artificial liquid-liquid phase separation-driven silk fibroin-based adhesive for rapid hemostasis and wound sealing.

Acta Biomater. 2024-7-1

[8]
Double-Dynamic-Bond Cross-Linked Hydrogel Adhesive with Cohesion-Adhesion Enhancement for Emergency Tissue Closure and Infected Wound Healing.

Adv Healthc Mater. 2025-3

[9]
An All-in-One Tannic Acid-Containing Hydrogel Adhesive with High Toughness, Notch Insensitivity, Self-Healability, Tailorable Topography, and Strong, Instant, and On-Demand Underwater Adhesion.

ACS Appl Mater Interfaces. 2021-3-3

[10]
Self-Pumping Janus Hydrogel with Aligned Channels for Accelerating Diabetic Wound Healing.

Macromol Rapid Commun. 2023-4

引用本文的文献

[1]
Multifunctional Janus Hydrogels: Surface Design Strategies for Next-Generation Clinical Solutions.

Gels. 2025-5-6

[2]
Mucus-Inspired Supramolecular Adhesives: Exploring the Synergy between Dynamic Networks and Functional Liquids.

ACS Nano. 2025-4-22

本文引用的文献

[1]
A self-stabilized and water-responsive deliverable coenzyme-based polymer binary elastomer adhesive patch for treating oral ulcer.

Nat Commun. 2023-11-24

[2]
Bioadhesive Technology Platforms.

Chem Rev. 2023-12-27

[3]
Cell-extracellular matrix mechanotransduction in 3D.

Nat Rev Mol Cell Biol. 2023-7

[4]
A Compartmentalized Nanoreactor Formed by Interfacial Hydrogelation for Cascade Enzyme Catalytic Therapy.

Angew Chem Int Ed Engl. 2023-4-3

[5]
A bioadhesive robot to activate muscles.

Nat Mater. 2023-2

[6]
A Super Tough, Rapidly Biodegradable, Ultrafast Hemostatic Bioglue.

Adv Mater. 2023-3

[7]
A smart adhesive Janus hydrogel for non-invasive cardiac repair and tissue adhesion prevention.

Nat Commun. 2022-12-12

[8]
Iodoform Gauze Packing is an Alternative Therapy for Postoperative Parotid Fistula.

J Craniofac Surg.

[9]
Successive Redox-Reaction-Triggered Interface Radical Polymerization for Growing Hydrogel Coatings on Diverse Substrates.

Angew Chem Int Ed Engl. 2022-9-26

[10]
IL-17 and IL-17-producing cells in protection versus pathology.

Nat Rev Immunol. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索